Skip to content

This page was last updated on 2025-07-28 06:13:31 UTC

Recommendations for the article Discovery of Physics From Data: Universal Laws and Discrepancies

Abstract Title Authors Publication Date Journal/ Conference Citation count Highest h-index
visibility_off A Unified Sparse Optimization Framework to Learn Parsimonious Physics-Informed Models From Data Kathleen P. Champion, P. Zheng, A. Aravkin, S. Brunton, J. Kutz 2019-06-25 IEEE Access 120 72
visibility_off Machine-Learning Non-Conservative Dynamics for New-Physics Detection Ziming Liu, Bohan Wang, Qi Meng, Wei Chen, M. Tegmark, Tie-Yan Liu 2021-05-31 Physical review. E 15 89
visibility_off AI-Newton: A Concept-Driven Physical Law Discovery System without Prior Physical Knowledge Youyuan Fang, Dong-Shan Jian, Xiang Li, Yan-Qing Ma 2025-04-02 ArXiv 0 2
visibility_off Discovering conservation laws from trajectories via machine learning Seungwoong Ha, Hawoong Jeong 2021-02-08 ArXiv 10 43
visibility_off The Lie Detector. A. Young, A. Lawrie 2019-12-13 arXiv: Signal Processing 0 18
visibility_off Physics-Informed Machine Learning for Modeling and Control of Dynamical Systems Truong X. Nghiem, Ján Drgoňa, Colin N. Jones, Zoltán Nagy, Roland Schwan, Biswadip Dey, A. Chakrabarty, S. D. Cairano, J. Paulson, Andrea Carron, M. Zeilinger, Wenceslao Shaw-Cortez, D. Vrabie 2023-05-31 2023 American Control Conference (ACC) 31 38
visibility_off Scale-invariant Learning by Physics Inversion Philipp Holl, V. Koltun, Nils Thuerey 2021-09-30 ArXiv, DBLP 9 110
visibility_off Machine Learning Conservation Laws from Trajectories. Ziming Liu, Max Tegmark 2021-05-06 Physical review letters 110 85
visibility_off From data to conservation laws F. Chirigati 2023-09-01 Nature Computational Science 1 17
Abstract Title Authors Publication Date Journal/Conference Citation count Highest h-index