This page was last updated on 2025-06-23 11:22:59 UTC
Recommendations for the article Discovery of Physics From Data: Universal Laws and Discrepancies
Abstract | Title | Authors | Publication Date | Journal/ Conference | Citation count | Highest h-index |
---|---|---|---|---|---|---|
visibility_off | A Unified Sparse Optimization Framework to Learn Parsimonious Physics-Informed Models From Data | Kathleen P. Champion, P. Zheng, A. Aravkin, S. Brunton, J. Kutz | 2019-06-25 | IEEE Access | 118 | 70 |
visibility_off | Machine-Learning Non-Conservative Dynamics for New-Physics Detection | Ziming Liu, Bohan Wang, Qi Meng, Wei Chen, M. Tegmark, Tie-Yan Liu | 2021-05-31 | Physical review. E | 15 | 86 |
visibility_off | AI-Newton: A Concept-Driven Physical Law Discovery System without Prior Physical Knowledge | Youyuan Fang, Dong-Shan Jian, Xiang Li, Yan-Qing Ma | 2025-04-02 | ArXiv | 0 | 2 |
visibility_off | The Lie Detector. | A. Young, A. Lawrie | 2019-12-13 | arXiv: Signal Processing | 0 | 18 |
visibility_off | Physics-Informed Machine Learning for Modeling and Control of Dynamical Systems | Truong X. Nghiem, Ján Drgoňa, Colin N. Jones, Zoltán Nagy, Roland Schwan, Biswadip Dey, A. Chakrabarty, S. D. Cairano, J. Paulson, Andrea Carron, M. Zeilinger, Wenceslao Shaw-Cortez, D. Vrabie | 2023-05-31 | 2023 American Control Conference (ACC) | 31 | 38 |
visibility_off | Learning continuous models for continuous physics | Aditi S. Krishnapriyan, A. Queiruga, N. Benjamin Erichson, Michael W. Mahoney | 2022-02-17 | Communications Physics | 35 | 34 |
visibility_off | Machine Learning Conservation Laws from Trajectories. | Ziming Liu, Max Tegmark | 2021-05-06 | Physical review letters | 109 | 83 |
visibility_off | Discovering conservation laws using optimal transport and manifold learning | Peter Y. Lu, Rumen Dangovski, M. Soljavci'c | 2022-08-31 | Nature Communications | 18 | 14 |
Abstract | Title | Authors | Publication Date | Journal/Conference | Citation count | Highest h-index |