Symbolic regression
This page was last updated on 2025-08-18 06:12:54 UTC
Manually curated articles on Symbolic regression
Abstract | Title | Authors | Publication Date | Journal/ Conference | Citation count | Highest h-index | View recommendations |
---|---|---|---|---|---|---|---|
visibility_off | Discovering governing equations from data by sparse identification of nonlinear dynamical systems | S. Brunton, J. Proctor, J. Kutz | 2015-09-11 | Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences of the United States of America | 4023 | 72 | open_in_new |
visibility_off | Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression | Patrick A. K. Reinbold, Logan Kageorge, M. Schatz, R. Grigoriev | 2021-02-24 | Nature Communications | 114 | 25 | open_in_new |
visibility_off | Data-driven discovery of coordinates and governing equations | Kathleen P. Champion, Bethany Lusch, J. Kutz, S. Brunton | 2019-03-29 | Proceedings of the National Academy of Sciences of the United States of America | 781 | 72 | open_in_new |
visibility_off | Chaos as an intermittently forced linear system | S. Brunton, Bingni W. Brunton, J. Proctor, E. Kaiser, J. Kutz | 2016-08-18 | Nature Communications | 535 | 72 | open_in_new |
visibility_off | Sparse identification of nonlinear dynamics for model predictive control in the low-data limit | E. Kaiser, J. Kutz, S. Brunton | 2017-11-15 | Proceedings. Mathematical, Physical, and Engineering Sciences, Proceedings of the Royal Society A | 538 | 72 | open_in_new |
visibility_off | Inferring Biological Networks by Sparse Identification of Nonlinear Dynamics | N. Mangan, S. Brunton, J. Proctor, J. Kutz | 2016-05-26 | IEEE Transactions on Molecular, Biological and Multi-Scale Communications, IEEE Transactions on Molecular Biological and Multi-Scale Communications | 366 | 72 | open_in_new |
visibility_off | SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics | Kadierdan Kaheman, J. Kutz, S. Brunton | 2020-04-05 | Proceedings. Mathematical, Physical, and Engineering Sciences, Proceedings of the Royal Society A | 286 | 72 | open_in_new |
visibility_off | Multidimensional Approximation of Nonlinear Dynamical Systems | Patrick Gelß, Stefan Klus, J. Eisert, Christof Schutte | 2018-09-07 | Journal of Computational and Nonlinear Dynamics | 72 | 22 | open_in_new |
visibility_off | Learning Discrepancy Models From Experimental Data | Kadierdan Kaheman, E. Kaiser, B. Strom, J. Kutz, S. Brunton | 2019-09-18 | ArXiv, arXiv.org | 46 | 72 | open_in_new |
visibility_off | Discovery of Physics From Data: Universal Laws and Discrepancies | Brian M. de Silva, D. Higdon, S. Brunton, J. Kutz | 2019-06-19 | Frontiers in Artificial Intelligence | 88 | 72 | open_in_new |
visibility_off | Data-driven discovery of partial differential equations | S. Rudy, S. Brunton, J. Proctor, J. Kutz | 2016-09-21 | Science Advances | 1400 | 72 | open_in_new |
visibility_off | Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control | Urban Fasel, J. Kutz, Bingni W. Brunton, S. Brunton | 2021-11-22 | Proceedings. Mathematical, Physical, and Engineering Sciences, Proceedings of the Royal Society A | 251 | 72 | open_in_new |
visibility_off | Learning sparse nonlinear dynamics via mixed-integer optimization | D. Bertsimas, Wes Gurnee | 2022-06-01 | Nonlinear Dynamics | 48 | 96 | open_in_new |
visibility_off | A Unified Framework for Sparse Relaxed Regularized Regression: SR3 | P. Zheng, T. Askham, S. Brunton, J. Kutz, A. Aravkin | 2018-07-14 | IEEE Access | 145 | 72 | open_in_new |
Abstract | Title | Authors | Publication Date | Journal/ Conference | Citation count | Highest h-index | View recommendations |
Recommended articles on Symbolic regression
Abstract | Title | Authors | Publication Date | Journal/Conference | Citation count | Highest h-index |
---|---|---|---|---|---|---|
visibility_off | SINDy on slow manifolds | Diemen Delgado-Cano, Erick Kracht, Urban Fasel, Benjamin Herrmann | 2025-07-01 | ArXiv | 0 | 12 |
visibility_off | Discovering Governing Equations in the Presence of Uncertainty | Ridwan Olabiyi, Han Hu, Ashif Iquebal | 2025-07-13 | ArXiv | 0 | 1 |
visibility_off | Efficient data-driven regression for reduced-order modeling of spatial pattern formation | Alessandro Alla, Rudy Geelen, Hannah Lu | 2025-08-09 | ArXiv | 0 | 0 |
visibility_off | Sparse identification of nonlinear dynamics with library optimization mechanism: Recursive long-term prediction perspective | Ansei Yonezawa, Heisei Yonezawa, S. Yahagi, Itsuro Kajiwara, Shinya Kijimoto, Hikaru Taniuchi, Kentaro Murakami | 2025-07-24 | ArXiv | 0 | 10 |
visibility_off | Discovering Interpretable Ordinary Differential Equations from Noisy Data | Rahul Golder, M. M. F. Hasan | 2025-07-29 | ArXiv | 0 | 0 |
visibility_off | Structured Kolmogorov-Arnold Neural ODEs for Interpretable Learning and Symbolic Discovery of Nonlinear Dynamics | Wei Liu, Kiran Bacsa, Loon Ching Tang, Eleni N. Chatzi | 2025-06-22 | ArXiv | 0 | 5 |
visibility_off | ECLEIRS: Exact conservation law embedded identification of reduced states for parameterized partial differential equations from sparse and noisy data | Aviral Prakash, Ben S. Southworth, M. Klasky | 2025-06-23 | ArXiv | 0 | 2 |
visibility_off | Sparse Identification of Nonlinear Dynamics with Conformal Prediction | Urban Fasel | 2025-07-15 | ArXiv | 0 | 12 |
visibility_off | Overcoming error-in-variable problem in data-driven model discovery by orthogonal distance regression | Lloyd Fung | 2025-07-31 | ArXiv | 0 | 0 |
visibility_off | Surrogate normal-forms for the numerical bifurcation and stability analysis of navier-stokes flows via machine learning | Alessandro Della Pia, Dimitrios G. Patsatzis, G. Rozza, Lucia Russo, Constantinos I. Siettos | 2025-06-26 | ArXiv | 0 | 53 |
visibility_off | Causal Operator Discovery in Partial Differential Equations via Counterfactual Physics-Informed Neural Networks | Ronald Katende | 2025-06-25 | ArXiv | 0 | 0 |
visibility_off | Time-series modeling with neural flow maps | Bingxian Xu, Zoey E. Ho, Yitong Huang | 2025-06-24 | bioRxiv | 0 | 1 |
visibility_off | Evaluating PDE discovery methods for multiscale modeling of biological signals | Andréa Ducos, Audrey Denizot, Thomas Guyet, Hugues Berry | 2025-06-25 | ArXiv | 0 | 5 |
visibility_off | Learning Structured Population Models from Data with WSINDy | Rainey Lyons, Vanja Dukic, David M. Bortz | 2025-06-30 | ArXiv | 1 | 2 |
visibility_off | Neural Dynamic Modes: Computational Imaging of Dynamical Systems from Sparse Observations | Ali SaraerToosi, Renbo Tu, K. Azizzadenesheli, A. Levis | 2025-07-03 | ArXiv | 0 | 37 |
visibility_off | Robust PDE discovery under sparse and highly noisy conditions via attention neural networks | Shilin Zhang, Yunqing Huang, Nianyu Yi, shihan Zhang | 2025-06-21 | ArXiv | 0 | 16 |
visibility_off | Data-Driven Stabilisation of Unstable Periodic Orbits of the Three-Body Problem | Owen M. Brook, J. Bramburger, Davide Amato, Urban Fasel | 2025-07-11 | ArXiv | 0 | 12 |
visibility_off | Sparse Identification of Nonlinear Dynamics for Stochastic Delay Differential Equations | Dimitri Breda, D. Conte, Raffaele D'Ambrosio, Ida Santaniello, Muhammad Tanveer | 2025-08-05 | ArXiv | 0 | 22 |
visibility_off | Machine Learning-Based Nonlinear Nudging for Chaotic Dynamical Systems | Jaemin Oh, Jinsil Lee, Youngjoon Hong | 2025-08-07 | ArXiv | 0 | 3 |
visibility_off | Blending data and physics for reduced-order modeling of systems with spatiotemporal chaotic dynamics | Alex Guo, Michael D. Graham | 2025-07-21 | ArXiv | 0 | 0 |
visibility_off | Weak Form Scientific Machine Learning: Test Function Construction for System Identification | April Tran, David M. Bortz | 2025-07-03 | ArXiv | 0 | 4 |
visibility_off | Characterizing control between interacting subsystems with deep Jacobian estimation | Adam J. Eisen, Mitchell Ostrow, Sarthak Chandra, L. Kozachkov, Earl K. Miller, I. Fiete | 2025-07-02 | ArXiv | 0 | 32 |
visibility_off | Real-time forecasting of chaotic dynamics from sparse data and autoencoders | Elise Ozalp, Andrea N'ovoa, Luca Magri | 2025-08-12 | ArXiv | 0 | 1 |
visibility_off | Data-Driven Reconstruction and Characterization of Stochastic Dynamics via Dynamical Mode Decomposition | Adva Baratz, L. M. Cangemi, A. Hamo, S. Refaely-Abramson, Amikam Levy | 2025-07-08 | ArXiv | 0 | 30 |
visibility_off | Neural Ordinary Differential Equations for Learning and Extrapolating System Dynamics Across Bifurcations | Eva van Tegelen, George van Voorn, Ioannis Athanasiadis, P. Heijster | 2025-07-25 | ArXiv | 0 | 15 |
visibility_off | PhysicsCorrect: A Training-Free Approach for Stable Neural PDE Simulations | Xinquan Huang, P. Perdikaris | 2025-07-02 | ArXiv | 0 | 50 |
visibility_off | Symmetry-reduced model reduction of shift-equivariant systems via operator inference | Yu Shuai, Clarence W. Rowley | 2025-07-24 | ArXiv | 0 | 0 |
visibility_off | Stochastic and Non-local Closure Modeling for Nonlinear Dynamical Systems via Latent Score-based Generative Models | Xinghao Dong, Huchen Yang, Jin-Long Wu | 2025-06-25 | ArXiv | 1 | 1 |
visibility_off | Bayesian Generalized Nonlinear Models Offer Basis Free SINDy With Model Uncertainty | A. Hubin | 2025-07-09 | ArXiv | 0 | 9 |
visibility_off | Quantum-Informed Machine Learning for Chaotic Systems | Maida Wang, Xiao Xue, Peter V. Coveney | 2025-07-26 | ArXiv | 0 | 4 |
visibility_off | PnP-DA: Towards Principled Plug-and-Play Integration of Variational Data Assimilation and Generative Models | Yongquan Qu, Matthieu Blanke, S. Shamekh, Pierre Gentine | 2025-08-01 | ArXiv | 0 | 6 |
visibility_off | PINN-Obs: Physics-Informed Neural Network-Based Observer for Nonlinear Dynamical Systems | Ayoub Farkane, Mohamed Boutayeb, Mustapha Oudani, Mounir Ghogho | 2025-07-09 | ArXiv | 0 | 7 |
visibility_off | Forecasting chaotic dynamic using hybrid system | Michele Baia, T. Matteuzzi, Franco Bagnoli | 2025-07-21 | ArXiv | 0 | 2 |
visibility_off | Neural models of multiscale systems: conceptual limitations, stochastic parametrizations, and a climate application | Fabrizio Falasca | 2025-06-27 | ArXiv | 0 | 1 |
visibility_off | Simulating Three-dimensional Turbulence with Physics-informed Neural Networks | Sifan Wang, Shyam Sankaran, P. Stinis, P. Perdikaris | 2025-07-11 | ArXiv | 0 | 50 |
visibility_off | Real-time prediction of plasma instabilities with sparse-grid-accelerated optimized dynamic mode decomposition | Kevin Gill, Ionut-Gabriel Farcas, Silke Glas, Benjamin J. Faber | 2025-07-03 | ArXiv | 0 | 9 |
visibility_off | Weight-Parameterization in Continuous Time Deep Neural Networks for Surrogate Modeling | Haley Rosso, Lars Ruthotto, K. Sargsyan | 2025-07-29 | ArXiv | 0 | 27 |
visibility_off | Structural System Identification via Validation and Adaptation | Cristian López, Keegan J. Moore | 2025-06-25 | ArXiv | 0 | 3 |
visibility_off | Learning Koopman Models From Data Under General Noise Conditions | Lucian-Cristian Iacob, M'at'e Sz'ecsi, G. Beintema, M. Schoukens, Roland T'oth | 2025-07-13 | ArXiv | 1 | 7 |
visibility_off | A Score-based Diffusion Model Approach for Adaptive Learning of Stochastic Partial Differential Equation Solutions | Toan Huynh, Ruth Fajardo, Guannan Zhang, Lili Ju, Feng Bao | 2025-08-09 | ArXiv | 0 | 5 |
visibility_off | Physical Informed Neural Networks for modeling ocean pollutant | Karishma Battina, Prathamesh Dinesh Joshi, R. Dandekar, R. Dandekar, S. Panat | 2025-07-07 | ArXiv | 0 | 4 |
visibility_off | Beyond Static Models: Hypernetworks for Adaptive and Generalizable Forecasting in Complex Parametric Dynamical Systems | Pantelis R. Vlachas, Konstantinos Vlachas, Eleni Chatzi | 2025-06-24 | ArXiv | 0 | 5 |
visibility_off | Inferring viscoplastic models from velocity fields: a physics-informed neural network approach | Martin Lardy, Sham Tlili, Simon Gsell | 2025-06-21 | ArXiv | 0 | 1 |
visibility_off | Sparsity-Promoting Dynamic Mode Decomposition Applied to Sea Surface Temperature Fields | Zhicheng Zhang, Yoshihiko Susuki, Atsushi Okazaki | 2025-07-07 | ArXiv | 0 | 0 |
visibility_off | The Fourier Spectral Transformer Networks For Efficient and Generalizable Nonlinear PDEs Prediction | Beibei Li | 2025-07-07 | ArXiv | 0 | 0 |
visibility_off | When do World Models Successfully Learn Dynamical Systems? | Edmund Ross, Claudia Drygala, Leonhard Schwarz, Samir Kaiser, F. D. Mare, Tobias Breiten, Hanno Gottschalk | 2025-07-07 | ArXiv | 0 | 5 |
visibility_off | GeoHNNs: Geometric Hamiltonian Neural Networks | A. M. Aboussalah, Abdessalam Ed-dib | 2025-07-21 | ArXiv | 0 | 4 |
visibility_off | Learning Stochastic Multiscale Models | Andrew F. Ilersich, Prasanth B. Nair | 2025-06-27 | ArXiv | 0 | 0 |
visibility_off | Forecasting Continuous Non-Conservative Dynamical Systems in SO(3) | Lennart Bastian, Mohammad Rashed, N. Navab, Tolga Birdal | 2025-08-11 | ArXiv | 0 | 54 |
Abstract | Title | Authors | Publication Date | Journal/Conference | Citation count | Highest h-index |