Symbolic regression
This page was last updated on 2025-07-28 06:13:41 UTC
Manually curated articles on Symbolic regression
Abstract | Title | Authors | Publication Date | Journal/ Conference | Citation count | Highest h-index | View recommendations |
---|---|---|---|---|---|---|---|
visibility_off | Discovering governing equations from data by sparse identification of nonlinear dynamical systems | S. Brunton, J. Proctor, J. Kutz | 2015-09-11 | Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences of the United States of America | 3916 | 72 | open_in_new |
visibility_off | Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression | Patrick A. K. Reinbold, Logan Kageorge, M. Schatz, R. Grigoriev | 2021-02-24 | Nature Communications | 111 | 25 | open_in_new |
visibility_off | Data-driven discovery of coordinates and governing equations | Kathleen P. Champion, Bethany Lusch, J. Kutz, S. Brunton | 2019-03-29 | Proceedings of the National Academy of Sciences of the United States of America | 753 | 72 | open_in_new |
visibility_off | Chaos as an intermittently forced linear system | S. Brunton, Bingni W. Brunton, J. Proctor, E. Kaiser, J. Kutz | 2016-08-18 | Nature Communications | 530 | 72 | open_in_new |
visibility_off | Sparse identification of nonlinear dynamics for model predictive control in the low-data limit | E. Kaiser, J. Kutz, S. Brunton | 2017-11-15 | Proceedings. Mathematical, Physical, and Engineering Sciences, Proceedings of the Royal Society A | 533 | 72 | open_in_new |
visibility_off | Inferring Biological Networks by Sparse Identification of Nonlinear Dynamics | N. Mangan, S. Brunton, J. Proctor, J. Kutz | 2016-05-26 | IEEE Transactions on Molecular Biological and Multi-Scale Communications, IEEE Transactions on Molecular, Biological and Multi-Scale Communications | 361 | 72 | open_in_new |
visibility_off | SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics | Kadierdan Kaheman, J. Kutz, S. Brunton | 2020-04-05 | Proceedings. Mathematical, Physical, and Engineering Sciences, Proceedings of the Royal Society A | 276 | 72 | open_in_new |
visibility_off | Multidimensional Approximation of Nonlinear Dynamical Systems | Patrick Gelß, Stefan Klus, J. Eisert, Christof Schutte | 2018-09-07 | Journal of Computational and Nonlinear Dynamics | 71 | 21 | open_in_new |
visibility_off | Learning Discrepancy Models From Experimental Data | Kadierdan Kaheman, E. Kaiser, B. Strom, J. Kutz, S. Brunton | 2019-09-18 | arXiv.org, ArXiv | 46 | 72 | open_in_new |
visibility_off | Discovery of Physics From Data: Universal Laws and Discrepancies | Brian M. de Silva, D. Higdon, S. Brunton, J. Kutz | 2019-06-19 | Frontiers in Artificial Intelligence | 84 | 72 | open_in_new |
visibility_off | Data-driven discovery of partial differential equations | S. Rudy, S. Brunton, J. Proctor, J. Kutz | 2016-09-21 | Science Advances | 1374 | 72 | open_in_new |
visibility_off | Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control | Urban Fasel, J. Kutz, Bingni W. Brunton, S. Brunton | 2021-11-22 | Proceedings. Mathematical, Physical, and Engineering Sciences, Proceedings of the Royal Society A | 233 | 72 | open_in_new |
visibility_off | Learning sparse nonlinear dynamics via mixed-integer optimization | D. Bertsimas, Wes Gurnee | 2022-06-01 | Nonlinear Dynamics | 46 | 96 | open_in_new |
visibility_off | A Unified Framework for Sparse Relaxed Regularized Regression: SR3 | P. Zheng, T. Askham, S. Brunton, J. Kutz, A. Aravkin | 2018-07-14 | IEEE Access | 141 | 72 | open_in_new |
Abstract | Title | Authors | Publication Date | Journal/ Conference | Citation count | Highest h-index | View recommendations |
Recommended articles on Symbolic regression
Abstract | Title | Authors | Publication Date | Journal/Conference | Citation count | Highest h-index |
---|---|---|---|---|---|---|
visibility_off | Robust Moment Identification for Nonlinear PDEs via a Neural ODE Approach | Shaoxuan Chen, Su Yang, Panayotis Kevrekidis, Wei Zhu | 2025-06-05 | ArXiv | 0 | 1 |
visibility_off | Sparse identification of nonlinear dynamics with library optimization mechanism: Recursive long-term prediction perspective | Ansei Yonezawa, Heisei Yonezawa, S. Yahagi, Itsuro Kajiwara, Shinya Kijimoto, Hikaru Taniuchi, Kentaro Murakami | 2025-07-24 | ArXiv | 0 | 10 |
visibility_off | IDENT Review: Recent Advances in Identification of Differential Equations from Noisy Data | Roy Y. He, Hao Liu, Wenjing Liao, Sung Ha Kang | 2025-06-09 | ArXiv | 0 | 2 |
visibility_off | Data-driven identification of biomedical systems using multi-scale analysis | Ismaila Muhammed, Dimitris M. Manias, D. Goussis, Haralampos Hatzikirou | 2025-06-08 | bioRxiv | 0 | 36 |
visibility_off | Quantized local reduced-order modeling in time (ql-ROM) | Antonio Colanera, Luca Magri | 2025-06-16 | ArXiv | 0 | 0 |
visibility_off | Time-series modeling with neural flow maps | Bingxian Xu, Zoey E. Ho, Yitong Huang | 2025-06-24 | bioRxiv | 0 | 1 |
visibility_off | Neuro-Symbolic Operator for Interpretable and Generalizable Characterization of Complex Piezoelectric Systems | Abhishek Chandra, Taniya Kapoor, M. Curti, K. Tiels, E. Lomonova | 2025-05-30 | ArXiv | 0 | 25 |
visibility_off | Identifiability Challenges in Sparse Linear Ordinary Differential Equations | Cecilia Casolo, Soren Becker, Niki Kilbertus | 2025-06-11 | ArXiv | 0 | 15 |
visibility_off | Enhancing generalizability of model discovery across parameter space with multi-experiment equation learning (ME-EQL) | M. Ciocanel, John T. Nardini, Kevin B. Flores, Erica M. Rutter, Suzanne S. Sindi, A. Volkening | 2025-06-10 | ArXiv | 0 | 10 |
visibility_off | Identification of Differential Equations by Dynamics-Guided Weighted Weak Form with Voting | Jiahui Cheng, Sung Ha Kang, Haomin Zhou, Wenjing Liao | 2025-06-04 | ArXiv | 0 | 2 |
visibility_off | mLaSDI: Multi-stage latent space dynamics identification | William Anderson, Seung Whan Chung, Youngsoo Choi | 2025-06-10 | ArXiv | 0 | 4 |
visibility_off | SINDybrid: automatic generation of hybrid models for dynamic systems | Ulderico Di Caprio, M. Leblebici | 2025-06-14 | ArXiv | 0 | 14 |
visibility_off | Data-driven discovery of nonlinear dynamics in complex systems through phase-space informed neural ordinary differential equations | David Garrido González, N. Saura, S. Benkadda, P. Beyer | 2025-06-01 | Physics of Plasmas | 0 | 29 |
visibility_off | Data-assimilated model-informed reinforcement learning | D. E. Ozan, Andrea N'ovoa, Georgios Rigas, Luca Magri | 2025-06-02 | ArXiv | 0 | 2 |
visibility_off | Physics-Informed Neural Networks for the Korteweg-de Vries Equation for Internal Solitary Wave Problem: Forward Simulation and Inverse Parameter Estimation | Ming Kang, Hang Li, Qiwen Tan, Zhan Wang, Ruipeng Li, Junfang Zhao, Hui Xiang, Dixia Fan | 2025-06-17 | ArXiv | 0 | 3 |
visibility_off | Learning Beyond Experience: Generalizing to Unseen State Space with Reservoir Computing | Declan A. Norton, Yuanzhao Zhang, M. Girvan | 2025-06-05 | ArXiv | 0 | 20 |
visibility_off | Nonlinear Model Order Reduction of Dynamical Systems in Process Engineering: Review and Comparison | Jan C. Schulze, Alexander Mitsos | 2025-06-15 | ArXiv | 0 | 4 |
visibility_off | System Identification Using Kolmogorov-Arnold Networks: A Case Study on Buck Converters | Nart Gashi, Panagiotis Kakosimos, G. Papafotiou | 2025-06-09 | 2025 IEEE International Conference on Prognostics and Health Management (ICPHM) | 0 | 1 |
visibility_off | Reconstruction and Prediction of Volterra Integral Equations Driven by Gaussian Noise | Zhihao Xu, Saisai Ding, Zhikun Zhang, Xiangjun Wang | 2025-06-01 | ArXiv | 0 | 2 |
visibility_off | Thermodynamically Consistent Latent Dynamics Identification for Parametric Systems | Xiaolong He, Yeonjong Shin, Anthony Gruber, Sohyeon Jung, Kookjin Lee, Youngsoo Choi | 2025-06-10 | ArXiv | 0 | 4 |
visibility_off | Machine learning and partial differential equations: benchmark, simplify, and discover | P. Koumoutsakos | 2025-06-18 | Data-Centric Engineering | 0 | 3 |
visibility_off | Interpretability and Generalization Bounds for Learning Spatial Physics | A. Queiruga, Theo Gutman-Solo, Shuai Jiang | 2025-06-18 | ArXiv | 0 | 13 |
visibility_off | State-Space Kolmogorov Arnold Networks for Interpretable Nonlinear System Identification | Gonçalo G. Cruz, B. Renczes, M. Runacres, J. Decuyper | 2025-06-19 | IEEE Control Systems Letters | 0 | 19 |
visibility_off | ASP-Assisted Symbolic Regression: Uncovering Hidden Physics in Fluid Mechanics | T. Aravanis, Grigorios Chrimatopoulos, Mohammad Ferdows, M. Xenos, E. Tzirtzilakis | 2025-07-22 | ArXiv | 0 | 35 |
visibility_off | Operator theoretic measure of causality in linear dynamical systems | Ankit Srivastava, Louis Cattafesta, Scott Dawson | 2025-06-09 | ArXiv | 0 | 0 |
visibility_off | A Hybrid Neural Network - Polynomial Series Scheme for Learning Invariant Manifolds of Discrete Dynamical Systems | Dimitrios G. Patsatzis, Nikolaos K. Kazantzis, Ioannis G. Kevrekidis, Constantinos I. Siettos | 2025-06-16 | ArXiv | 0 | 3 |
visibility_off | Machine learning for detection of equivariant finite symmetry groups in dynamical systems | Pablo Calvo-Barlés, Sergio G. Rodrigo, Luis Martin-Moreno | 2025-06-03 | Machine Learning: Science and Technology | 0 | 6 |
visibility_off | Bi-Level optimization for parameter estimation of differential equations using interpolation | Siddharth Prabhu, Srinivas Rangarajan, M. Kothare | 2025-05-31 | ArXiv | 0 | 31 |
visibility_off | MoPINNEnKF: Iterative Model Inference using generic-PINN-based ensemble Kalman filter | B.-L. Lu, Changhong Mou, Guang Lin | 2025-05-31 | ArXiv | 0 | 2 |
visibility_off | PMNO: A novel physics guided multi-step neural operator predictor for partial differential equations | Jin Song, Kenji Kawaguchi, Zhenya Yan | 2025-06-02 | ArXiv | 0 | 3 |
visibility_off | Influence Functions for Data Attribution in Linear System Identification and LQR Control | Jiachen Li, Shihao Li, Jiamin Xu, S. Bakshi, Dongmei Chen | 2025-06-12 | ArXiv | 0 | 6 |
visibility_off | Hierarchical Dimensionless Learning (Hi-{\pi}): A physics-data hybrid-driven approach for discovering dimensionless parameter combinations | Mingkun Xia, Haitao Lin, Weiwei Zhang | 2025-07-24 | ArXiv | 0 | 0 |
visibility_off | An adaptive data sampling strategy for stabilizing dynamical systems via controller inference | Steffen W. R. Werner, B. Peherstorfer | 2025-06-02 | ArXiv | 0 | 29 |
visibility_off | From Local Interactions to Global Operators: Scalable Gaussian Process Operator for Physical Systems | Sawan Kumar, Tapas Tripura, R. Nayek, Souvik Chakraborty | 2025-06-19 | ArXiv | 0 | 14 |
visibility_off | Neural Tangent Kernel Analysis to Probe Convergence in Physics-informed Neural Solvers: PIKANs vs. PINNs | Salah A. Faroughi, Farinaz Mostajeran | 2025-06-09 | ArXiv | 0 | 2 |
visibility_off | Identification of dynamic models of microbial communities | Ana Paredes-Vázquez, Eva Balsa-Canto, J. Banga | 2025-06-12 | bioRxiv | 0 | 55 |
visibility_off | A Data-Integrated Framework for Learning Fractional-Order Nonlinear Dynamical Systems | B. Yaghooti, Chengyu Li, Bruno Sinopoli | 2025-06-18 | ArXiv | 0 | 4 |
visibility_off | Machine Learning-based quadratic closures for non-intrusive Reduced Order Models | Gabriele Codega, A. Ivagnes, N. Demo, G. Rozza | 2025-06-11 | ArXiv | 0 | 53 |
visibility_off | Uncertainty quantification and stability of neural operators for prediction of three-dimensional turbulence | Xintong Zou, Zhijie Li, Yunpeng Wang, Huiyu Yang, Jianchun Wang | 2025-06-05 | ArXiv | 1 | 9 |
visibility_off | Leveraging Continuous-Time Echo State Networks to Accelerate Computing Nonlinear Stiff Dynamics through Parareal in Time Simulation | Juman Hamdan, M. K. Riahi | 2025-06-01 | Journal of Physics: Conference Series | 0 | 0 |
visibility_off | PINNs Algorithmic Framework for Simulation of Nonlinear Burgers' Type Models | Ajeet Singh, Ram Jiwari, Vikram, Ujjwal Saini | 2025-06-15 | ArXiv | 0 | 3 |
visibility_off | Data-Driven Model Order Reduction for Continuous- and Discrete-Time Nonlinear Systems | Behrad Samari, Henrik Sandberg, K. H. Johansson, Abolfazl Lavaei | 2025-07-24 | ArXiv | 0 | 19 |
visibility_off | Hamiltonian Learning via Inverse Physics-Informed Neural Networks | Jie Liu, Xin Wang | 2025-06-12 | ArXiv | 0 | 1 |
visibility_off | Hierarchical Implicit Neural Emulators | Ruoxi Jiang, Xiao Zhang, Karan Jakhar, Peter Y. Lu, P. Hassanzadeh, Michael Maire, Rebecca Willett | 2025-06-05 | ArXiv | 0 | 26 |
visibility_off | Petrov-Galerkin model reduction for collisional-radiative argon plasma | Ivan Zanardi, Alessandro Meini, Alberto Padovan, Daniel J. Bodony, Marco Panesi | 2025-06-05 | ArXiv | 0 | 4 |
visibility_off | Autoregressive regularized score-based diffusion models for multi-scenarios fluid flow prediction | Wilfried Genuist, Éric Savin, F. Gatti, Didier Clouteau | 2025-05-30 | ArXiv | 0 | 11 |
visibility_off | An Introduction to Solving the Least-Squares Problem in Variational Data Assimilation | Ieva Daužickaitė, M. A. Freitag, S. Gürol, A. Lawless, A. Ramage, Jennifer A. Scott, Jemima M. Tabeart | 2025-06-10 | ArXiv | 0 | 23 |
Abstract | Title | Authors | Publication Date | Journal/Conference | Citation count | Highest h-index |