SBML Dataloader
This module handles loading and simulating SBML models using PyTorch Lightning.
SBMLDataModule
Bases: LightningDataModule
A LightningDataModule for simulating and loading SBML-based time course data.
Source code in vpeleaderboard/data/src/sbml_dataloader.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
|
SBMLTimeCourseDataset
Bases: IterableDataset
Dataset class for iterating over SBML simulation results.
Source code in vpeleaderboard/data/src/sbml_dataloader.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
|
__init__(data)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Any
|
Data to be used in the dataset (e.g., pandas DataFrame). |
required |
Source code in vpeleaderboard/data/src/sbml_dataloader.py
25 26 27 28 29 30 |
|
__iter__()
Iterator method for the dataset.
Yields:
Type | Description |
---|---|
torch.Tensor: Each row in the dataset as a tensor. |
Source code in vpeleaderboard/data/src/sbml_dataloader.py
32 33 34 35 36 37 38 39 40 |
|
__init__(file_name)
Initializes the SBMLDataModule with the given SBML model file name.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file_name
|
str
|
The name of the SBML model to load. |
required |
Source code in vpeleaderboard/data/src/sbml_dataloader.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
|
prepare_data()
Loads YAML config and locates the SBML file.
This method will locate and load the YAML configuration file, validate its contents, and check for the necessary SBML model file.
Raises:
Type | Description |
---|---|
FileNotFoundError
|
If the SBML model or YAML config file is not found. |
ValueError
|
If the YAML config file is empty or missing required keys. |
Source code in vpeleaderboard/data/src/sbml_dataloader.py
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
|
setup(stage=None)
Loads the SBML model only after prepare_data has been called.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stage
|
Optional[str]
|
The stage of setup, typically used in multi-stage setups. |
None
|
Raises:
Type | Description |
---|---|
RuntimeError
|
If |
FileNotFoundError
|
If the SBML file is not found. |
Source code in vpeleaderboard/data/src/sbml_dataloader.py
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
|
test_dataloader()
Creates the DataLoader for the test dataset based on the SBML simulation results.
Returns:
Name | Type | Description |
---|---|---|
DataLoader |
DataLoader
|
The DataLoader for the test dataset. |
Source code in vpeleaderboard/data/src/sbml_dataloader.py
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
|
train_dataloader()
Creates the DataLoader for the training dataset based on the SBML simulation results.
Returns:
Name | Type | Description |
---|---|---|
DataLoader |
DataLoader
|
The DataLoader for the training dataset. |
Source code in vpeleaderboard/data/src/sbml_dataloader.py
129 130 131 132 133 134 135 136 137 138 139 140 141 |
|
val_dataloader()
Creates the DataLoader for the validating dataset based on the SBML simulation results.
Returns:
Name | Type | Description |
---|---|---|
DataLoader |
DataLoader
|
The DataLoader for the validating dataset. |
Source code in vpeleaderboard/data/src/sbml_dataloader.py
142 143 144 145 146 147 148 149 150 151 152 153 154 |
|