Tool Helper
Helper class for PDF Q&A tool orchestration: state validation, vectorstore init, paper loading, reranking, and answer formatting.
QAToolHelper
Encapsulates helper routines for the PDF Question & Answer tool.
Source code in aiagents4pharma/talk2scholars/tools/pdf/utils/tool_helper.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
|
format_answer(question, chunks, llm, articles)
Generate the final answer text with source attributions.
Source code in aiagents4pharma/talk2scholars/tools/pdf/utils/tool_helper.py
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
|
get_state_models_and_data(state)
Retrieve embedding model, LLM, and article data from agent state.
Source code in aiagents4pharma/talk2scholars/tools/pdf/utils/tool_helper.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
|
init_vector_store(emb_model)
Return shared or new Vectorstore instance.
Source code in aiagents4pharma/talk2scholars/tools/pdf/utils/tool_helper.py
50 51 52 53 54 55 56 57 58 |
|
load_candidate_papers(vs, articles, candidates)
Ensure each candidate paper is loaded into the vector store.
Source code in aiagents4pharma/talk2scholars/tools/pdf/utils/tool_helper.py
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
|
run_reranker(vs, query, candidates)
Rank papers by relevance and return filtered paper IDs.
Source code in aiagents4pharma/talk2scholars/tools/pdf/utils/tool_helper.py
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
|