Multi Paper Recommendation
Recommend research papers related to a set of input papers using Semantic Scholar.
Given a list of Semantic Scholar paper IDs, this tool aggregates related works (citations and references) from each input paper and returns a consolidated list of recommended papers.
MultiPaperRecInput
Bases: BaseModel
Defines the input schema for the multi-paper recommendation tool.
Attributes:
Name | Type | Description |
---|---|---|
paper_ids |
List[str]
|
List of 40-character Semantic Scholar Paper IDs (provide at least two). |
limit |
int
|
Maximum total number of recommendations to return (1-500). |
year |
Optional[str]
|
Optional publication year filter; supports formats: 'YYYY', 'YYYY-', '-YYYY', 'YYYY:YYYY'. |
tool_call_id |
Annotated[str, InjectedToolCallId]
|
Internal tool call identifier injected by the system. |
Source code in aiagents4pharma/talk2scholars/tools/s2/multi_paper_rec.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
|
get_multi_paper_recommendations(paper_ids, tool_call_id, limit=10, year=None)
Return recommended papers based on multiple Semantic Scholar paper IDs.
This tool accepts a list of Semantic Scholar paper IDs and returns a set of recommended papers by aggregating related works (citations and references) from each input paper.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
paper_ids
|
List[str]
|
List of 40-character Semantic Scholar paper IDs. |
required |
tool_call_id
|
str
|
Internal tool call identifier injected by the system. |
required |
limit
|
int
|
Maximum total number of recommendations to return. Defaults to 10. |
10
|
year
|
str
|
Publication year filter; supports formats: 'YYYY', |
None
|
'YYYY-',
|
'-YYYY', 'YYYY
|
YYYY'. Defaults to None. |
required |
Returns:
Name | Type | Description |
---|---|---|
Command |
Command[Any]
|
A Command object containing: - multi_papers: List of recommended papers. - last_displayed_papers: Same list for display purposes. - messages: List containing a ToolMessage with recommendations details. |
Source code in aiagents4pharma/talk2scholars/tools/s2/multi_paper_rec.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
|