Skip to content

Zotero Agent

Agent for interacting with Zotero with human-in-the-loop features

get_app(uniq_id, llm_model)

Initializes and returns the LangGraph application for the Zotero agent.

This function sets up the Zotero agent, which integrates various tools to search, retrieve, and display research papers from Zotero. The agent follows the ReAct pattern for structured interaction and includes human-in-the-loop features.

Parameters:

Name Type Description Default
uniq_id str

Unique identifier for the current conversation session.

required
llm_model BaseChatModel

The language model to be used by the agent. Defaults to ChatOpenAI(model="gpt-4o-mini", temperature=0).

required

Returns:

Name Type Description
StateGraph

A compiled LangGraph application that enables the Zotero agent to process user queries and retrieve research papers.

Example

app = get_app("thread_123") result = app.invoke(initial_state)

Source code in aiagents4pharma/talk2scholars/agents/zotero_agent.py
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
def get_app(uniq_id, llm_model: BaseChatModel):
    """
    Initializes and returns the LangGraph application for the Zotero agent.

    This function sets up the Zotero agent, which integrates various tools to search,
    retrieve, and display research papers from Zotero. The agent follows the ReAct
    pattern for structured interaction and includes human-in-the-loop features.

    Args:
        uniq_id (str): Unique identifier for the current conversation session.
        llm_model (BaseChatModel, optional): The language model to be used by the agent.
            Defaults to `ChatOpenAI(model="gpt-4o-mini", temperature=0)`.

    Returns:
        StateGraph: A compiled LangGraph application that enables the Zotero agent to
            process user queries and retrieve research papers.

    Example:
        >>> app = get_app("thread_123")
        >>> result = app.invoke(initial_state)
    """

    def agent_zotero_node(state: Talk2Scholars) -> Dict[str, Any]:
        """
        Processes the user query and retrieves relevant research papers from Zotero.

        This function calls the language model using the configured `ReAct` agent to
        analyze the state and generate an appropriate response. The function then
        returns control to the main supervisor.

        Args:
            state (Talk2Scholars): The current conversation state, including messages exchanged
                and any previously retrieved research papers.

        Returns:
            Dict[str, Any]: A dictionary containing the updated conversation state.

        Example:
            >>> result = agent_zotero_node(current_state)
            >>> papers = result.get("papers", [])
        """
        logger.log(
            logging.INFO, "Creating Agent_Zotero node with thread_id %s", uniq_id
        )
        result = model.invoke(state, {"configurable": {"thread_id": uniq_id}})

        return result

    # Load hydra configuration
    logger.log(logging.INFO, "Load Hydra configuration for Talk2Scholars Zotero agent.")
    with hydra.initialize(version_base=None, config_path="../configs"):
        cfg = hydra.compose(
            config_name="config",
            overrides=["agents/talk2scholars/zotero_agent=default"],
        )
        cfg = cfg.agents.talk2scholars.zotero_agent
        logger.log(logging.INFO, "Loaded configuration for Zotero agent")

    # Define the tools
    tools = ToolNode(
        [
            zotero_read,
            s2_display,
            s2_query_results,
            retrieve_semantic_scholar_paper_id,
            zotero_review,  # First review
            zotero_write,  # Then save with user confirmation
        ]
    )

    # Define the model
    logger.log(logging.INFO, "Using model %s", llm_model)

    # Create the agent
    model = create_react_agent(
        llm_model,
        tools=tools,
        state_schema=Talk2Scholars,
        prompt=cfg.zotero_agent,
        checkpointer=MemorySaver(),  # Required for interrupts to work
    )

    workflow = StateGraph(Talk2Scholars)
    workflow.add_node("agent_zotero", agent_zotero_node)
    workflow.add_edge(START, "agent_zotero")

    # Initialize memory to persist state between graph runs
    checkpointer = MemorySaver()

    # Compile the graph
    app = workflow.compile(checkpointer=checkpointer, name="agent_zotero")
    logger.log(
        logging.INFO,
        "Compiled the graph with thread_id %s and llm_model %s",
        uniq_id,
        llm_model,
    )

    return app