S2 Agent
Agent for interacting with Semantic Scholar
get_app(uniq_id, llm_model=ChatOpenAI(model='gpt-4o-mini', temperature=0))
Initializes and returns the LangGraph application for the Semantic Scholar (S2) agent.
This function sets up the S2 agent, which integrates various tools to search, retrieve, and display research papers from Semantic Scholar. The agent follows the ReAct pattern for structured interaction.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
uniq_id
|
str
|
Unique identifier for the current conversation session. |
required |
llm_model
|
BaseChatModel
|
The language model to be used by the agent.
Defaults to |
ChatOpenAI(model='gpt-4o-mini', temperature=0)
|
Returns:
Name | Type | Description |
---|---|---|
StateGraph |
A compiled LangGraph application that enables the S2 agent to process user queries and retrieve research papers. |
Example
app = get_app("thread_123") result = app.invoke(initial_state)
Source code in aiagents4pharma/talk2scholars/agents/s2_agent.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
|