PDF Agent
Agent for interacting with PDF documents via question and answer.
This module initializes and compiles a LangGraph application that enables users to query PDF documents using a question_and_answer tool. It integrates a language model and follows the ReAct pattern to process and answer queries related to PDF content.
Usage
app = get_app("unique_thread_id") response = app.invoke(initial_state)
get_app(uniq_id, llm_model)
Initializes and returns the LangGraph application for the PDF agent.
This function sets up the PDF agent by loading configuration settings via Hydra, initializing a model, and creating a workflow graph that incorporates PDF-specific tools. The agent is built using the ReAct pattern to facilitate interactive querying and processing of PDF documents.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
uniq_id
|
str
|
A unique identifier for the current conversation session or thread. |
required |
llm_model
|
BaseChatModel
|
The language model instance to be used. Defaults to ChatOpenAI(model="gpt-4o-mini", temperature=0). |
required |
Returns:
Name | Type | Description |
---|---|---|
StateGraph |
A compiled LangGraph application capable of handling PDF interactions. |
Example
app = get_app("thread_123") result = app.invoke(initial_state)
Source code in aiagents4pharma/talk2scholars/agents/pdf_agent.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
|