PCST
Exctraction of subgraph using Prize-Collecting Steiner Tree (PCST) algorithm.
PCSTPruning
Bases: NamedTuple
Prize-Collecting Steiner Tree (PCST) pruning algorithm implementation inspired by G-Retriever (He et al., 'G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering', NeurIPS 2024) paper. https://arxiv.org/abs/2402.07630 https://github.com/XiaoxinHe/G-Retriever/blob/main/src/dataset/utils/retrieval.py
Parameters:
Name | Type | Description | Default |
---|---|---|---|
topk
|
The number of top nodes to consider. |
required | |
topk_e
|
The number of top edges to consider. |
required | |
cost_e
|
The cost of the edges. |
required | |
c_const
|
The constant value for the cost of the edges computation. |
required | |
root
|
The root node of the subgraph, -1 for unrooted. |
required | |
num_clusters
|
The number of clusters. |
required | |
pruning
|
The pruning strategy to use. |
required | |
verbosity_level
|
The verbosity level. |
required |
Source code in aiagents4pharma/talk2knowledgegraphs/utils/extractions/pcst.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
|
compute_prizes(graph, query_emb)
Compute the node prizes based on the cosine similarity between the query and nodes, as well as the edge prizes based on the cosine similarity between the query and edges. Note that the node and edge embeddings shall use the same embedding model and dimensions with the query.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
graph
|
Data
|
The knowledge graph in PyTorch Geometric Data format. |
required |
query_emb
|
Tensor
|
The query embedding in PyTorch Tensor format. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
The prizes of the nodes and edges. |
Source code in aiagents4pharma/talk2knowledgegraphs/utils/extractions/pcst.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
|
compute_subgraph_costs(graph, prizes)
Compute the costs in constructing the subgraph proposed by G-Retriever paper.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
graph
|
Data
|
The knowledge graph in PyTorch Geometric Data format. |
required |
prizes
|
dict
|
The prizes of the nodes and the edges. |
required |
Returns:
Name | Type | Description |
---|---|---|
edges |
ndarray
|
The edges of the subgraph, consisting of edges and number of edges without virtual edges. |
prizes |
ndarray
|
The prizes of the subgraph. |
costs |
ndarray
|
The costs of the subgraph. |
Source code in aiagents4pharma/talk2knowledgegraphs/utils/extractions/pcst.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
|
extract_subgraph(graph, query_emb)
Perform the Prize-Collecting Steiner Tree (PCST) algorithm to extract the subgraph.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
graph
|
Data
|
The knowledge graph in PyTorch Geometric Data format. |
required |
query_emb
|
Tensor
|
The query embedding. |
required |
Returns:
Type | Description |
---|---|
dict
|
The selected nodes and edges of the subgraph. |
Source code in aiagents4pharma/talk2knowledgegraphs/utils/extractions/pcst.py
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
|
get_subgraph_nodes_edges(graph, vertices, edges_dict, mapping)
Get the selected nodes and edges of the subgraph based on the vertices and edges computed by the PCST algorithm.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
graph
|
Data
|
The knowledge graph in PyTorch Geometric Data format. |
required |
vertices
|
ndarray
|
The vertices of the subgraph computed by the PCST algorithm. |
required |
edges_dict
|
dict
|
The dictionary of edges of the subgraph computed by the PCST algorithm, and the number of prior edges (without virtual edges). |
required |
mapping
|
dict
|
The mapping dictionary of the nodes and edges. |
required |
num_prior_edges
|
The number of edges before adding virtual edges. |
required |
Returns:
Type | Description |
---|---|
dict
|
The selected nodes and edges of the extracted subgraph. |
Source code in aiagents4pharma/talk2knowledgegraphs/utils/extractions/pcst.py
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
|