PCST (Milvus Multimodal)
Exctraction of multimodal subgraph using Prize-Collecting Steiner Tree (PCST) algorithm.
MultimodalPCSTPruning
Bases: NamedTuple
Prize-Collecting Steiner Tree (PCST) pruning algorithm implementation inspired by G-Retriever (He et al., 'G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering', NeurIPS 2024) paper. https://arxiv.org/abs/2402.07630 https://github.com/XiaoxinHe/G-Retriever/blob/main/src/dataset/utils/retrieval.py
Parameters:
Name | Type | Description | Default |
---|---|---|---|
topk
|
The number of top nodes to consider. |
required | |
topk_e
|
The number of top edges to consider. |
required | |
cost_e
|
The cost of the edges. |
required | |
c_const
|
The constant value for the cost of the edges computation. |
required | |
root
|
The root node of the subgraph, -1 for unrooted. |
required | |
num_clusters
|
The number of clusters. |
required | |
pruning
|
The pruning strategy to use. |
required | |
verbosity_level
|
The verbosity level. |
required |
Source code in aiagents4pharma/talk2knowledgegraphs/utils/extractions/milvus_multimodal_pcst.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
|
_compute_edge_prizes(text_emb, colls)
Compute the node prizes based on the cosine similarity between the query and nodes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text_emb
|
list
|
The textual description embedding. |
required |
colls
|
dict
|
The collections of nodes, node-type specific nodes, and edges in Milvus. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
The prizes of the nodes. |
Source code in aiagents4pharma/talk2knowledgegraphs/utils/extractions/milvus_multimodal_pcst.py
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
|
_compute_node_prizes(query_emb, colls)
Compute the node prizes based on the cosine similarity between the query and nodes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query_emb
|
list
|
The query embedding. This can be an embedding of a prompt, sequence, or any other feature to be used for the subgraph extraction. |
required |
colls
|
dict
|
The collections of nodes, node-type specific nodes, and edges in Milvus. |
required |
Returns:
Type | Description |
---|---|
dict
|
The prizes of the nodes. |
Source code in aiagents4pharma/talk2knowledgegraphs/utils/extractions/milvus_multimodal_pcst.py
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
|
compute_prizes(text_emb, query_emb, colls)
Compute the node prizes based on the cosine similarity between the query and nodes, as well as the edge prizes based on the cosine similarity between the query and edges. Note that the node and edge embeddings shall use the same embedding model and dimensions with the query.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text_emb
|
list
|
The textual description embedding. |
required |
query_emb
|
list
|
The query embedding. This can be an embedding of a prompt, sequence, or any other feature to be used for the subgraph extraction. |
required |
colls
|
dict
|
The collections of nodes, node-type specific nodes, and edges in Milvus. |
required |
Returns:
Type | Description |
---|---|
dict
|
The prizes of the nodes and edges. |
Source code in aiagents4pharma/talk2knowledgegraphs/utils/extractions/milvus_multimodal_pcst.py
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
|
compute_subgraph_costs(edge_index, num_nodes, prizes)
Compute the costs in constructing the subgraph proposed by G-Retriever paper.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
edge_index
|
ndarray
|
The edge index of the graph, consisting of source and destination nodes. |
required |
num_nodes
|
int
|
The number of nodes in the graph. |
required |
prizes
|
dict
|
The prizes of the nodes and the edges. |
required |
Returns:
Name | Type | Description |
---|---|---|
edges |
ndarray
|
The edges of the subgraph, consisting of edges and number of edges without virtual edges. |
prizes |
ndarray
|
The prizes of the subgraph. |
costs |
ndarray
|
The costs of the subgraph. |
Source code in aiagents4pharma/talk2knowledgegraphs/utils/extractions/milvus_multimodal_pcst.py
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
|
extract_subgraph(text_emb, query_emb, modality, cfg)
Perform the Prize-Collecting Steiner Tree (PCST) algorithm to extract the subgraph.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text_emb
|
list
|
The textual description embedding. |
required |
query_emb
|
list
|
The query embedding. This can be an embedding of a prompt, sequence, or any other feature to be used for the subgraph extraction. |
required |
modality
|
str
|
The modality to use for the subgraph extraction (e.g., "text", "sequence", "smiles"). |
required |
cfg
|
dict
|
The configuration dictionary containing the Milvus setup. |
required |
Returns:
Type | Description |
---|---|
dict
|
The selected nodes and edges of the subgraph. |
Source code in aiagents4pharma/talk2knowledgegraphs/utils/extractions/milvus_multimodal_pcst.py
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
|
get_subgraph_nodes_edges(num_nodes, vertices, edges_dict, mapping)
Get the selected nodes and edges of the subgraph based on the vertices and edges computed by the PCST algorithm.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
num_nodes
|
int
|
The number of nodes in the graph. |
required |
vertices
|
ndarray
|
The vertices selected by the PCST algorithm. |
required |
edges_dict
|
dict
|
A dictionary containing the edges and the number of prior edges. |
required |
mapping
|
dict
|
A dictionary containing the mapping of nodes and edges. |
required |
Returns:
Type | Description |
---|---|
dict
|
The selected nodes and edges of the extracted subgraph. |
Source code in aiagents4pharma/talk2knowledgegraphs/utils/extractions/milvus_multimodal_pcst.py
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
|
prepare_collections(cfg, modality)
Prepare the collections for nodes, node-type specific nodes, and edges in Milvus.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cfg
|
dict
|
The configuration dictionary containing the Milvus setup. |
required |
modality
|
str
|
The modality to use for the subgraph extraction. |
required |
Returns:
Type | Description |
---|---|
dict
|
A dictionary containing the collections of nodes, node-type specific nodes, and edges. |
Source code in aiagents4pharma/talk2knowledgegraphs/utils/extractions/milvus_multimodal_pcst.py
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
|