EmbeddingWithHuggingFace
Embedding class using HuggingFace model based on LangChain Embeddings class.
            EmbeddingWithHuggingFace
    
              Bases: Embeddings
Embedding class using HuggingFace model based on LangChain Embeddings class.
Source code in aiagents4pharma/talk2knowledgegraphs/utils/embeddings/huggingface.py
                11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111  |  | 
            __init__(model_name, model_cache_dir=None, truncation=True, device='cpu')
    Initialize the EmbeddingWithHuggingFace class.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                model_name
             | 
            
                  str
             | 
            
               The name of the HuggingFace model to be used.  | 
            required | 
                model_cache_dir
             | 
            
                  str
             | 
            
               The directory to cache the HuggingFace model.  | 
            
                  None
             | 
          
                truncation
             | 
            
                  bool
             | 
            
               The truncation flag for the HuggingFace tokenizer.  | 
            
                  True
             | 
          
                return_tensors
             | 
            
               The return_tensors flag for the HuggingFace tokenizer.  | 
            required | |
                device
             | 
            
                  str
             | 
            
               The device to run the model on.  | 
            
                  'cpu'
             | 
          
Source code in aiagents4pharma/talk2knowledgegraphs/utils/embeddings/huggingface.py
              16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  |  | 
            embed_documents(texts)
    Generate embedding for a list of input texts using HuggingFace model.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                texts
             | 
            
                  list[str]
             | 
            
               The list of texts to be embedded.  | 
            required | 
Returns:
| Type | Description | 
|---|---|
                  list[float]
             | 
            
               The list of embeddings for the given texts.  | 
          
Source code in aiagents4pharma/talk2knowledgegraphs/utils/embeddings/huggingface.py
              66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88  |  | 
            embed_query(text)
    Generate embeddings for an input text using HuggingFace model.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                text
             | 
            
                  str
             | 
            
               A query to be embedded.  | 
            required | 
Returns: The embeddings for the given query.
Source code in aiagents4pharma/talk2knowledgegraphs/utils/embeddings/huggingface.py
              90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111  |  | 
            meanpooling(output, mask)
    Mean Pooling - Take attention mask into account for correct averaging. According to the following documentation: https://huggingface.co/NeuML/pubmedbert-base-embeddings
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                output
             | 
            
               The output of the model.  | 
            required | |
                mask
             | 
            
               The mask of the model.  | 
            required | 
Source code in aiagents4pharma/talk2knowledgegraphs/utils/embeddings/huggingface.py
              52 53 54 55 56 57 58 59 60 61 62 63 64  |  |