Skip to content

Subgraph Extraction

Tool for performing subgraph extraction.

SubgraphExtractionInput

Bases: BaseModel

SubgraphExtractionInput is a Pydantic model representing an input for extracting a subgraph.

Parameters:

Name Type Description Default
prompt

Prompt to interact with the backend.

required
tool_call_id

Tool call ID.

required
state

Injected state.

required
arg_data

Argument for analytical process over graph data.

required
Source code in aiagents4pharma/talk2knowledgegraphs/tools/subgraph_extraction.py
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
class SubgraphExtractionInput(BaseModel):
    """
    SubgraphExtractionInput is a Pydantic model representing an input for extracting a subgraph.

    Args:
        prompt: Prompt to interact with the backend.
        tool_call_id: Tool call ID.
        state: Injected state.
        arg_data: Argument for analytical process over graph data.
    """

    tool_call_id: Annotated[str, InjectedToolCallId] = Field(
        description="Tool call ID."
    )
    state: Annotated[dict, InjectedState] = Field(description="Injected state.")
    prompt: str = Field(description="Prompt to interact with the backend.")
    arg_data: ArgumentData = Field(
        description="Experiment over graph data.", default=None
    )

SubgraphExtractionTool

Bases: BaseTool

This tool performs subgraph extraction based on user's prompt by taking into account the top-k nodes and edges.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/subgraph_extraction.py
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
class SubgraphExtractionTool(BaseTool):
    """
    This tool performs subgraph extraction based on user's prompt by taking into account
    the top-k nodes and edges.
    """

    name: str = "subgraph_extraction"
    description: str = "A tool for subgraph extraction based on user's prompt."
    args_schema: Type[BaseModel] = SubgraphExtractionInput

    def perform_endotype_filtering(
        self,
        prompt: str,
        state: Annotated[dict, InjectedState],
        cfg: hydra.core.config_store.ConfigStore,
    ) -> str:
        """
        Perform endotype filtering based on the uploaded files and prepare the prompt.

        Args:
            prompt: The prompt to interact with the backend.
            state: Injected state for the tool.
            cfg: Hydra configuration object.
        """
        # Loop through the uploaded files
        all_genes = []
        for uploaded_file in state["uploaded_files"]:
            if uploaded_file["file_type"] == "endotype":
                # Load the PDF file
                docs = PyPDFLoader(file_path=uploaded_file["file_path"]).load()

                # Split the text into chunks
                splits = RecursiveCharacterTextSplitter(
                    chunk_size=cfg.splitter_chunk_size,
                    chunk_overlap=cfg.splitter_chunk_overlap,
                ).split_documents(docs)

                # Create a chat prompt template
                prompt_template = ChatPromptTemplate.from_messages(
                    [
                        ("system", cfg.prompt_endotype_filtering),
                        ("human", "{input}"),
                    ]
                )

                qa_chain = create_stuff_documents_chain(
                    state["llm_model"], prompt_template
                )
                rag_chain = create_retrieval_chain(
                    InMemoryVectorStore.from_documents(
                        documents=splits, embedding=state["embedding_model"]
                    ).as_retriever(
                        search_type=cfg.retriever_search_type,
                        search_kwargs={
                            "k": cfg.retriever_k,
                            "fetch_k": cfg.retriever_fetch_k,
                            "lambda_mult": cfg.retriever_lambda_mult,
                        },
                    ),
                    qa_chain,
                )
                results = rag_chain.invoke({"input": prompt})
                all_genes.append(results["answer"])

        # Prepare the prompt
        if len(all_genes) > 0:
            prompt = " ".join(
                [prompt, cfg.prompt_endotype_addition, ", ".join(all_genes)]
            )

        return prompt

    def prepare_final_subgraph(self,
                               subgraph: dict,
                               pyg_graph: Data,
                               textualized_graph: pd.DataFrame) -> dict:
        """
        Prepare the subgraph based on the extracted subgraph.

        Args:
            subgraph: The extracted subgraph.
            pyg_graph: The PyTorch Geometric graph.
            textualized_graph: The textualized graph.

        Returns:
            A dictionary containing the PyG graph, NetworkX graph, and textualized graph.
        """
        # print(subgraph)
        # Prepare the PyTorch Geometric graph
        mapping = {n: i for i, n in enumerate(subgraph["nodes"].tolist())}
        pyg_graph = Data(
            # Node features
            x=pyg_graph.x[subgraph["nodes"]],
            node_id=np.array(pyg_graph.node_id)[subgraph["nodes"]].tolist(),
            node_name=np.array(pyg_graph.node_id)[subgraph["nodes"]].tolist(),
            enriched_node=np.array(pyg_graph.enriched_node)[subgraph["nodes"]].tolist(),
            num_nodes=len(subgraph["nodes"]),
            # Edge features
            edge_index=torch.LongTensor(
                [
                    [
                        mapping[i]
                        for i in pyg_graph.edge_index[:, subgraph["edges"]][0].tolist()
                    ],
                    [
                        mapping[i]
                        for i in pyg_graph.edge_index[:, subgraph["edges"]][1].tolist()
                    ],
                ]
            ),
            edge_attr=pyg_graph.edge_attr[subgraph["edges"]],
            edge_type=np.array(pyg_graph.edge_type)[subgraph["edges"]].tolist(),
            relation=np.array(pyg_graph.edge_type)[subgraph["edges"]].tolist(),
            label=np.array(pyg_graph.edge_type)[subgraph["edges"]].tolist(),
            enriched_edge=np.array(pyg_graph.enriched_edge)[subgraph["edges"]].tolist(),
        )

        # Networkx DiGraph construction to be visualized in the frontend
        nx_graph = nx.DiGraph()
        for n in pyg_graph.node_name:
            nx_graph.add_node(n)
        for i, e in enumerate(
            [
                [pyg_graph.node_name[i], pyg_graph.node_name[j]]
                for (i, j) in pyg_graph.edge_index.transpose(1, 0)
            ]
        ):
            nx_graph.add_edge(
                e[0],
                e[1],
                relation=pyg_graph.edge_type[i],
                label=pyg_graph.edge_type[i],
            )

        # Prepare the textualized subgraph
        textualized_graph = (
            textualized_graph["nodes"].iloc[subgraph["nodes"]].to_csv(index=False)
            + "\n"
            + textualized_graph["edges"].iloc[subgraph["edges"]].to_csv(index=False)
        )

        return {
            "graph_pyg": pyg_graph,
            "graph_nx": nx_graph,
            "graph_text": textualized_graph,
        }

    def _run(
        self,
        tool_call_id: Annotated[str, InjectedToolCallId],
        state: Annotated[dict, InjectedState],
        prompt: str,
        arg_data: ArgumentData = None,
    ) -> Command:
        """
        Run the subgraph extraction tool.

        Args:
            tool_call_id: The tool call ID for the tool.
            state: Injected state for the tool.
            prompt: The prompt to interact with the backend.
            arg_data (ArgumentData): The argument data.

        Returns:
            Command: The command to be executed.
        """
        logger.log(logging.INFO, "Invoking subgraph_extraction tool")

        # Load hydra configuration
        with hydra.initialize(version_base=None, config_path="../configs"):
            cfg = hydra.compose(
                config_name="config", overrides=["tools/subgraph_extraction=default"]
            )
            cfg = cfg.tools.subgraph_extraction

        # Retrieve source graph from the state
        initial_graph = {}
        initial_graph["source"] = state["dic_source_graph"][-1]  # The last source graph as of now
        # logger.log(logging.INFO, "Source graph: %s", source_graph)

        # Load the knowledge graph
        with open(initial_graph["source"]["kg_pyg_path"], "rb") as f:
            initial_graph["pyg"] = pickle.load(f)
        with open(initial_graph["source"]["kg_text_path"], "rb") as f:
            initial_graph["text"] = pickle.load(f)

        # Prepare prompt construction along with a list of endotypes
        if len(state["uploaded_files"]) != 0 and "endotype" in [
            f["file_type"] for f in state["uploaded_files"]
        ]:
            prompt = self.perform_endotype_filtering(prompt, state, cfg)

        # Prepare embedding model and embed the user prompt as query
        query_emb = torch.tensor(
            EmbeddingWithOllama(model_name=cfg.ollama_embeddings[0]).embed_query(prompt)
        ).float()

        # Prepare the PCSTPruning object and extract the subgraph
        # Parameters were set in the configuration file obtained from Hydra
        subgraph = PCSTPruning(
            state["topk_nodes"],
            state["topk_edges"],
            cfg.cost_e,
            cfg.c_const,
            cfg.root,
            cfg.num_clusters,
            cfg.pruning,
            cfg.verbosity_level,
        ).extract_subgraph(initial_graph["pyg"], query_emb)

        # Prepare subgraph as a NetworkX graph and textualized graph
        final_subgraph = self.prepare_final_subgraph(
            subgraph, initial_graph["pyg"], initial_graph["text"]
        )

        # Prepare the dictionary of extracted graph
        dic_extracted_graph = {
            "name": arg_data.extraction_name,
            "tool_call_id": tool_call_id,
            "graph_source": initial_graph["source"]["name"],
            "topk_nodes": state["topk_nodes"],
            "topk_edges": state["topk_edges"],
            "graph_dict": {
                "nodes": list(final_subgraph["graph_nx"].nodes(data=True)),
                "edges": list(final_subgraph["graph_nx"].edges(data=True)),
            },
            "graph_text": final_subgraph["graph_text"],
            "graph_summary": None,
        }

        # Prepare the dictionary of updated state
        dic_updated_state_for_model = {}
        for key, value in {
            "dic_extracted_graph": [dic_extracted_graph],
        }.items():
            if value:
                dic_updated_state_for_model[key] = value

        # Return the updated state of the tool
        return Command(
            update=dic_updated_state_for_model | {
                # update the message history
                "messages": [
                    ToolMessage(
                        content=f"Subgraph Extraction Result of {arg_data.extraction_name}",
                        tool_call_id=tool_call_id,
                    )
                ],
            }
        )

_run(tool_call_id, state, prompt, arg_data=None)

Run the subgraph extraction tool.

Parameters:

Name Type Description Default
tool_call_id Annotated[str, InjectedToolCallId]

The tool call ID for the tool.

required
state Annotated[dict, InjectedState]

Injected state for the tool.

required
prompt str

The prompt to interact with the backend.

required
arg_data ArgumentData

The argument data.

None

Returns:

Name Type Description
Command Command

The command to be executed.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/subgraph_extraction.py
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
def _run(
    self,
    tool_call_id: Annotated[str, InjectedToolCallId],
    state: Annotated[dict, InjectedState],
    prompt: str,
    arg_data: ArgumentData = None,
) -> Command:
    """
    Run the subgraph extraction tool.

    Args:
        tool_call_id: The tool call ID for the tool.
        state: Injected state for the tool.
        prompt: The prompt to interact with the backend.
        arg_data (ArgumentData): The argument data.

    Returns:
        Command: The command to be executed.
    """
    logger.log(logging.INFO, "Invoking subgraph_extraction tool")

    # Load hydra configuration
    with hydra.initialize(version_base=None, config_path="../configs"):
        cfg = hydra.compose(
            config_name="config", overrides=["tools/subgraph_extraction=default"]
        )
        cfg = cfg.tools.subgraph_extraction

    # Retrieve source graph from the state
    initial_graph = {}
    initial_graph["source"] = state["dic_source_graph"][-1]  # The last source graph as of now
    # logger.log(logging.INFO, "Source graph: %s", source_graph)

    # Load the knowledge graph
    with open(initial_graph["source"]["kg_pyg_path"], "rb") as f:
        initial_graph["pyg"] = pickle.load(f)
    with open(initial_graph["source"]["kg_text_path"], "rb") as f:
        initial_graph["text"] = pickle.load(f)

    # Prepare prompt construction along with a list of endotypes
    if len(state["uploaded_files"]) != 0 and "endotype" in [
        f["file_type"] for f in state["uploaded_files"]
    ]:
        prompt = self.perform_endotype_filtering(prompt, state, cfg)

    # Prepare embedding model and embed the user prompt as query
    query_emb = torch.tensor(
        EmbeddingWithOllama(model_name=cfg.ollama_embeddings[0]).embed_query(prompt)
    ).float()

    # Prepare the PCSTPruning object and extract the subgraph
    # Parameters were set in the configuration file obtained from Hydra
    subgraph = PCSTPruning(
        state["topk_nodes"],
        state["topk_edges"],
        cfg.cost_e,
        cfg.c_const,
        cfg.root,
        cfg.num_clusters,
        cfg.pruning,
        cfg.verbosity_level,
    ).extract_subgraph(initial_graph["pyg"], query_emb)

    # Prepare subgraph as a NetworkX graph and textualized graph
    final_subgraph = self.prepare_final_subgraph(
        subgraph, initial_graph["pyg"], initial_graph["text"]
    )

    # Prepare the dictionary of extracted graph
    dic_extracted_graph = {
        "name": arg_data.extraction_name,
        "tool_call_id": tool_call_id,
        "graph_source": initial_graph["source"]["name"],
        "topk_nodes": state["topk_nodes"],
        "topk_edges": state["topk_edges"],
        "graph_dict": {
            "nodes": list(final_subgraph["graph_nx"].nodes(data=True)),
            "edges": list(final_subgraph["graph_nx"].edges(data=True)),
        },
        "graph_text": final_subgraph["graph_text"],
        "graph_summary": None,
    }

    # Prepare the dictionary of updated state
    dic_updated_state_for_model = {}
    for key, value in {
        "dic_extracted_graph": [dic_extracted_graph],
    }.items():
        if value:
            dic_updated_state_for_model[key] = value

    # Return the updated state of the tool
    return Command(
        update=dic_updated_state_for_model | {
            # update the message history
            "messages": [
                ToolMessage(
                    content=f"Subgraph Extraction Result of {arg_data.extraction_name}",
                    tool_call_id=tool_call_id,
                )
            ],
        }
    )

perform_endotype_filtering(prompt, state, cfg)

Perform endotype filtering based on the uploaded files and prepare the prompt.

Parameters:

Name Type Description Default
prompt str

The prompt to interact with the backend.

required
state Annotated[dict, InjectedState]

Injected state for the tool.

required
cfg ConfigStore

Hydra configuration object.

required
Source code in aiagents4pharma/talk2knowledgegraphs/tools/subgraph_extraction.py
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
def perform_endotype_filtering(
    self,
    prompt: str,
    state: Annotated[dict, InjectedState],
    cfg: hydra.core.config_store.ConfigStore,
) -> str:
    """
    Perform endotype filtering based on the uploaded files and prepare the prompt.

    Args:
        prompt: The prompt to interact with the backend.
        state: Injected state for the tool.
        cfg: Hydra configuration object.
    """
    # Loop through the uploaded files
    all_genes = []
    for uploaded_file in state["uploaded_files"]:
        if uploaded_file["file_type"] == "endotype":
            # Load the PDF file
            docs = PyPDFLoader(file_path=uploaded_file["file_path"]).load()

            # Split the text into chunks
            splits = RecursiveCharacterTextSplitter(
                chunk_size=cfg.splitter_chunk_size,
                chunk_overlap=cfg.splitter_chunk_overlap,
            ).split_documents(docs)

            # Create a chat prompt template
            prompt_template = ChatPromptTemplate.from_messages(
                [
                    ("system", cfg.prompt_endotype_filtering),
                    ("human", "{input}"),
                ]
            )

            qa_chain = create_stuff_documents_chain(
                state["llm_model"], prompt_template
            )
            rag_chain = create_retrieval_chain(
                InMemoryVectorStore.from_documents(
                    documents=splits, embedding=state["embedding_model"]
                ).as_retriever(
                    search_type=cfg.retriever_search_type,
                    search_kwargs={
                        "k": cfg.retriever_k,
                        "fetch_k": cfg.retriever_fetch_k,
                        "lambda_mult": cfg.retriever_lambda_mult,
                    },
                ),
                qa_chain,
            )
            results = rag_chain.invoke({"input": prompt})
            all_genes.append(results["answer"])

    # Prepare the prompt
    if len(all_genes) > 0:
        prompt = " ".join(
            [prompt, cfg.prompt_endotype_addition, ", ".join(all_genes)]
        )

    return prompt

prepare_final_subgraph(subgraph, pyg_graph, textualized_graph)

Prepare the subgraph based on the extracted subgraph.

Parameters:

Name Type Description Default
subgraph dict

The extracted subgraph.

required
pyg_graph Data

The PyTorch Geometric graph.

required
textualized_graph DataFrame

The textualized graph.

required

Returns:

Type Description
dict

A dictionary containing the PyG graph, NetworkX graph, and textualized graph.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/subgraph_extraction.py
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
def prepare_final_subgraph(self,
                           subgraph: dict,
                           pyg_graph: Data,
                           textualized_graph: pd.DataFrame) -> dict:
    """
    Prepare the subgraph based on the extracted subgraph.

    Args:
        subgraph: The extracted subgraph.
        pyg_graph: The PyTorch Geometric graph.
        textualized_graph: The textualized graph.

    Returns:
        A dictionary containing the PyG graph, NetworkX graph, and textualized graph.
    """
    # print(subgraph)
    # Prepare the PyTorch Geometric graph
    mapping = {n: i for i, n in enumerate(subgraph["nodes"].tolist())}
    pyg_graph = Data(
        # Node features
        x=pyg_graph.x[subgraph["nodes"]],
        node_id=np.array(pyg_graph.node_id)[subgraph["nodes"]].tolist(),
        node_name=np.array(pyg_graph.node_id)[subgraph["nodes"]].tolist(),
        enriched_node=np.array(pyg_graph.enriched_node)[subgraph["nodes"]].tolist(),
        num_nodes=len(subgraph["nodes"]),
        # Edge features
        edge_index=torch.LongTensor(
            [
                [
                    mapping[i]
                    for i in pyg_graph.edge_index[:, subgraph["edges"]][0].tolist()
                ],
                [
                    mapping[i]
                    for i in pyg_graph.edge_index[:, subgraph["edges"]][1].tolist()
                ],
            ]
        ),
        edge_attr=pyg_graph.edge_attr[subgraph["edges"]],
        edge_type=np.array(pyg_graph.edge_type)[subgraph["edges"]].tolist(),
        relation=np.array(pyg_graph.edge_type)[subgraph["edges"]].tolist(),
        label=np.array(pyg_graph.edge_type)[subgraph["edges"]].tolist(),
        enriched_edge=np.array(pyg_graph.enriched_edge)[subgraph["edges"]].tolist(),
    )

    # Networkx DiGraph construction to be visualized in the frontend
    nx_graph = nx.DiGraph()
    for n in pyg_graph.node_name:
        nx_graph.add_node(n)
    for i, e in enumerate(
        [
            [pyg_graph.node_name[i], pyg_graph.node_name[j]]
            for (i, j) in pyg_graph.edge_index.transpose(1, 0)
        ]
    ):
        nx_graph.add_edge(
            e[0],
            e[1],
            relation=pyg_graph.edge_type[i],
            label=pyg_graph.edge_type[i],
        )

    # Prepare the textualized subgraph
    textualized_graph = (
        textualized_graph["nodes"].iloc[subgraph["nodes"]].to_csv(index=False)
        + "\n"
        + textualized_graph["edges"].iloc[subgraph["edges"]].to_csv(index=False)
    )

    return {
        "graph_pyg": pyg_graph,
        "graph_nx": nx_graph,
        "graph_text": textualized_graph,
    }