Skip to content

Subgraph Extraction (Multimodal)

Tool for performing multimodal subgraph extraction.

MultimodalSubgraphExtractionInput

Bases: BaseModel

MultimodalSubgraphExtractionInput is a Pydantic model representing an input for extracting a subgraph.

Parameters:

Name Type Description Default
prompt

Prompt to interact with the backend.

required
tool_call_id

Tool call ID.

required
state

Injected state.

required
arg_data

Argument for analytical process over graph data.

required
Source code in aiagents4pharma/talk2knowledgegraphs/tools/multimodal_subgraph_extraction.py
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
class MultimodalSubgraphExtractionInput(BaseModel):
    """
    MultimodalSubgraphExtractionInput is a Pydantic model representing an input
    for extracting a subgraph.

    Args:
        prompt: Prompt to interact with the backend.
        tool_call_id: Tool call ID.
        state: Injected state.
        arg_data: Argument for analytical process over graph data.
    """

    tool_call_id: Annotated[str, InjectedToolCallId] = Field(
        description="Tool call ID."
    )
    state: Annotated[dict, InjectedState] = Field(description="Injected state.")
    prompt: str = Field(description="Prompt to interact with the backend.")
    arg_data: ArgumentData = Field(
        description="Experiment over graph data.", default=None
    )

MultimodalSubgraphExtractionTool

Bases: BaseTool

This tool performs subgraph extraction based on user's prompt by taking into account the top-k nodes and edges.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/multimodal_subgraph_extraction.py
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
class MultimodalSubgraphExtractionTool(BaseTool):
    """
    This tool performs subgraph extraction based on user's prompt by taking into account
    the top-k nodes and edges.
    """

    name: str = "subgraph_extraction"
    description: str = "A tool for subgraph extraction based on user's prompt."
    args_schema: Type[BaseModel] = MultimodalSubgraphExtractionInput

    def _prepare_query_modalities(self,
                                  prompt_emb: list,
                                  state: Annotated[dict, InjectedState],
                                  pyg_graph: Data) -> pd.DataFrame:
        """
        Prepare the modality-specific query for subgraph extraction.

        Args:
            prompt_emb: The embedding of the user prompt in a list.
            state: The injected state for the tool.
            pyg_graph: The PyTorch Geometric graph Data.

        Returns:
            A DataFrame containing the query embeddings and modalities.
        """
        # Initialize dataframes
        multimodal_df = pd.DataFrame({"name": []})
        query_df = pd.DataFrame({"node_id": [],
                                 "node_type": [],
                                 "x": [],
                                 "desc_x": [],
                                 "use_description": []})

        # Loop over the uploaded files and find multimodal files
        for i in range(len(state["uploaded_files"])):
            # Check if multimodal file is uploaded
            if state["uploaded_files"][i]["file_type"] == "multimodal":
                # Read the Excel file
                multimodal_df = pd.read_excel(state["uploaded_files"][i]["file_path"],
                                              sheet_name=None)

        # Check if the multimodal_df is empty
        if len(multimodal_df) > 0:
            # Merge all obtained dataframes into a single dataframe
            multimodal_df = pd.concat(multimodal_df).reset_index()
            multimodal_df.drop(columns=["level_1"], inplace=True)
            multimodal_df.rename(columns={"level_0": "q_node_type",
                                        "name": "q_node_name"}, inplace=True)
            # Since an excel sheet name could not contain a `/`,
            # but the node type can be 'gene/protein' as exists in the PrimeKG
            multimodal_df["q_node_type"] = multimodal_df.q_node_type.apply(
                lambda x: x.replace('-', '/')
            )

            # Convert PyG graph to a DataFrame for easier filtering
            graph_df = pd.DataFrame({
                "node_id": pyg_graph.node_id,
                "node_name": pyg_graph.node_name,
                "node_type": pyg_graph.node_type,
                "x": pyg_graph.x,
                "desc_x": pyg_graph.desc_x.tolist(),
            })

            # Make a query dataframe by merging the graph_df and multimodal_df
            query_df = graph_df.merge(multimodal_df, how='cross')
            query_df = query_df[
                query_df.apply(
                    lambda x:
                    (x['q_node_name'].lower() in x['node_name'].lower()) & # node name
                    (x['node_type'] == x['q_node_type']), # node type
                    axis=1
                )
            ]
            query_df = query_df[['node_id', 'node_type', 'x', 'desc_x']].reset_index(drop=True)
            query_df['use_description'] = False # set to False for modal-specific embeddings

            # Update the state by adding the the selected node IDs
            state["selections"] = query_df.groupby("node_type")["node_id"].apply(list).to_dict()

        # Append a user prompt to the query dataframe
        query_df = pd.concat([
            query_df,
            pd.DataFrame({
                'node_id': 'user_prompt',
                'node_type': 'prompt',
                'x': prompt_emb,
                'desc_x': prompt_emb,
                'use_description': True # set to True for user prompt embedding
            })
        ]).reset_index(drop=True)

        return query_df

    def _perform_subgraph_extraction(self,
                                     state: Annotated[dict, InjectedState],
                                     cfg: dict,
                                     pyg_graph: Data,
                                     query_df: pd.DataFrame) -> dict:
        """
        Perform multimodal subgraph extraction based on modal-specific embeddings.

        Args:
            state: The injected state for the tool.
            cfg: The configuration dictionary.
            pyg_graph: The PyTorch Geometric graph Data.
            query_df: The DataFrame containing the query embeddings and modalities.

        Returns:
            A dictionary containing the extracted subgraph with nodes and edges.
        """
        # Initialize the subgraph dictionary
        subgraphs = {}
        subgraphs["nodes"] = []
        subgraphs["edges"] = []

        # Loop over query embeddings and modalities
        for q in query_df.iterrows():
            # Prepare the PCSTPruning object and extract the subgraph
            # Parameters were set in the configuration file obtained from Hydra
            subgraph = MultimodalPCSTPruning(
                topk=state["topk_nodes"],
                topk_e=state["topk_edges"],
                cost_e=cfg.cost_e,
                c_const=cfg.c_const,
                root=cfg.root,
                num_clusters=cfg.num_clusters,
                pruning=cfg.pruning,
                verbosity_level=cfg.verbosity_level,
                use_description=q[1]['use_description'],
            ).extract_subgraph(pyg_graph,
                               torch.tensor(q[1]['desc_x']), # description embedding
                               torch.tensor(q[1]['x']), # modal-specific embedding
                               q[1]['node_type'])

            # Append the extracted subgraph to the dictionary
            subgraphs["nodes"].append(subgraph["nodes"].tolist())
            subgraphs["edges"].append(subgraph["edges"].tolist())

        # Concatenate and get unique node and edge indices
        subgraphs["nodes"] = np.unique(
            np.concatenate([np.array(list_) for list_ in subgraphs["nodes"]])
        )
        subgraphs["edges"] = np.unique(
            np.concatenate([np.array(list_) for list_ in subgraphs["edges"]])
        )

        return subgraphs

    def _prepare_final_subgraph(self,
                               state:Annotated[dict, InjectedState],
                               subgraph: dict,
                               graph: dict,
                               cfg) -> dict:
        """
        Prepare the subgraph based on the extracted subgraph.

        Args:
            state: The injected state for the tool.
            subgraph: The extracted subgraph.
            graph: The initial graph containing PyG and textualized graph.
            cfg: The configuration dictionary.

        Returns:
            A dictionary containing the PyG graph, NetworkX graph, and textualized graph.
        """
        # print(subgraph)
        # Prepare the PyTorch Geometric graph
        mapping = {n: i for i, n in enumerate(subgraph["nodes"].tolist())}
        pyg_graph = Data(
            # Node features
            # x=pyg_graph.x[subgraph["nodes"]],
            x=[graph["pyg"].x[i] for i in subgraph["nodes"]],
            node_id=np.array(graph["pyg"].node_id)[subgraph["nodes"]].tolist(),
            node_name=np.array(graph["pyg"].node_id)[subgraph["nodes"]].tolist(),
            enriched_node=np.array(graph["pyg"].enriched_node)[subgraph["nodes"]].tolist(),
            num_nodes=len(subgraph["nodes"]),
            # Edge features
            edge_index=torch.LongTensor(
                [
                    [
                        mapping[i]
                        for i in graph["pyg"].edge_index[:, subgraph["edges"]][0].tolist()
                    ],
                    [
                        mapping[i]
                        for i in graph["pyg"].edge_index[:, subgraph["edges"]][1].tolist()
                    ],
                ]
            ),
            edge_attr=graph["pyg"].edge_attr[subgraph["edges"]],
            edge_type=np.array(graph["pyg"].edge_type)[subgraph["edges"]].tolist(),
            relation=np.array(graph["pyg"].edge_type)[subgraph["edges"]].tolist(),
            label=np.array(graph["pyg"].edge_type)[subgraph["edges"]].tolist(),
            enriched_edge=np.array(graph["pyg"].enriched_edge)[subgraph["edges"]].tolist(),
        )

        # Networkx DiGraph construction to be visualized in the frontend
        nx_graph = nx.DiGraph()
        # Add nodes with attributes
        node_colors = {n: cfg.node_colors_dict[k]
                       for k, v in state["selections"].items() for n in v}
        for n in pyg_graph.node_name:
            nx_graph.add_node(n, color=node_colors.get(n, None))

        # Add edges with attributes
        edges = zip(
            pyg_graph.edge_index[0].tolist(),
            pyg_graph.edge_index[1].tolist(),
            pyg_graph.edge_type
        )
        for src, dst, edge_type in edges:
            nx_graph.add_edge(
                pyg_graph.node_name[src],
                pyg_graph.node_name[dst],
                relation=edge_type,
                label=edge_type,
            )

        # Prepare the textualized subgraph
        textualized_graph = (
            graph["text"]["nodes"].iloc[subgraph["nodes"]].to_csv(index=False)
            + "\n"
            + graph["text"]["edges"].iloc[subgraph["edges"]].to_csv(index=False)
        )

        return {
            "graph_pyg": pyg_graph,
            "graph_nx": nx_graph,
            "graph_text": textualized_graph,
        }

    def _run(
        self,
        tool_call_id: Annotated[str, InjectedToolCallId],
        state: Annotated[dict, InjectedState],
        prompt: str,
        arg_data: ArgumentData = None,
    ) -> Command:
        """
        Run the subgraph extraction tool.

        Args:
            tool_call_id: The tool call ID for the tool.
            state: Injected state for the tool.
            prompt: The prompt to interact with the backend.
            arg_data (ArgumentData): The argument data.

        Returns:
            Command: The command to be executed.
        """
        logger.log(logging.INFO, "Invoking subgraph_extraction tool")

        # Load hydra configuration
        with hydra.initialize(version_base=None, config_path="../configs"):
            cfg = hydra.compose(
                config_name="config", overrides=["tools/multimodal_subgraph_extraction=default"]
            )
            cfg = cfg.tools.multimodal_subgraph_extraction

        # Retrieve source graph from the state
        initial_graph = {}
        initial_graph["source"] = state["dic_source_graph"][-1]  # The last source graph as of now
        # logger.log(logging.INFO, "Source graph: %s", source_graph)

        # Load the knowledge graph
        with open(initial_graph["source"]["kg_pyg_path"], "rb") as f:
            initial_graph["pyg"] = pickle.load(f)
        with open(initial_graph["source"]["kg_text_path"], "rb") as f:
            initial_graph["text"] = pickle.load(f)

        # Prepare the query embeddings and modalities
        query_df = self._prepare_query_modalities(
            [EmbeddingWithOllama(model_name=cfg.ollama_embeddings[0]).embed_query(prompt)],
            state,
            initial_graph["pyg"]
        )

        # Perform subgraph extraction
        subgraphs = self._perform_subgraph_extraction(state,
                                                      cfg,
                                                      initial_graph["pyg"],
                                                      query_df)

        # Prepare subgraph as a NetworkX graph and textualized graph
        final_subgraph = self._prepare_final_subgraph(state,
                                                      subgraphs,
                                                      initial_graph,
                                                      cfg)

        # Prepare the dictionary of extracted graph
        dic_extracted_graph = {
            "name": arg_data.extraction_name,
            "tool_call_id": tool_call_id,
            "graph_source": initial_graph["source"]["name"],
            "topk_nodes": state["topk_nodes"],
            "topk_edges": state["topk_edges"],
            "graph_dict": {
                "nodes": list(final_subgraph["graph_nx"].nodes(data=True)),
                "edges": list(final_subgraph["graph_nx"].edges(data=True)),
            },
            "graph_text": final_subgraph["graph_text"],
            "graph_summary": None,
        }

        # Prepare the dictionary of updated state
        dic_updated_state_for_model = {}
        for key, value in {
            "dic_extracted_graph": [dic_extracted_graph],
        }.items():
            if value:
                dic_updated_state_for_model[key] = value

        # Return the updated state of the tool
        return Command(
            update=dic_updated_state_for_model | {
                # update the message history
                "messages": [
                    ToolMessage(
                        content=f"Subgraph Extraction Result of {arg_data.extraction_name}",
                        tool_call_id=tool_call_id,
                    )
                ],
            }
        )

_perform_subgraph_extraction(state, cfg, pyg_graph, query_df)

Perform multimodal subgraph extraction based on modal-specific embeddings.

Parameters:

Name Type Description Default
state Annotated[dict, InjectedState]

The injected state for the tool.

required
cfg dict

The configuration dictionary.

required
pyg_graph Data

The PyTorch Geometric graph Data.

required
query_df DataFrame

The DataFrame containing the query embeddings and modalities.

required

Returns:

Type Description
dict

A dictionary containing the extracted subgraph with nodes and edges.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/multimodal_subgraph_extraction.py
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
def _perform_subgraph_extraction(self,
                                 state: Annotated[dict, InjectedState],
                                 cfg: dict,
                                 pyg_graph: Data,
                                 query_df: pd.DataFrame) -> dict:
    """
    Perform multimodal subgraph extraction based on modal-specific embeddings.

    Args:
        state: The injected state for the tool.
        cfg: The configuration dictionary.
        pyg_graph: The PyTorch Geometric graph Data.
        query_df: The DataFrame containing the query embeddings and modalities.

    Returns:
        A dictionary containing the extracted subgraph with nodes and edges.
    """
    # Initialize the subgraph dictionary
    subgraphs = {}
    subgraphs["nodes"] = []
    subgraphs["edges"] = []

    # Loop over query embeddings and modalities
    for q in query_df.iterrows():
        # Prepare the PCSTPruning object and extract the subgraph
        # Parameters were set in the configuration file obtained from Hydra
        subgraph = MultimodalPCSTPruning(
            topk=state["topk_nodes"],
            topk_e=state["topk_edges"],
            cost_e=cfg.cost_e,
            c_const=cfg.c_const,
            root=cfg.root,
            num_clusters=cfg.num_clusters,
            pruning=cfg.pruning,
            verbosity_level=cfg.verbosity_level,
            use_description=q[1]['use_description'],
        ).extract_subgraph(pyg_graph,
                           torch.tensor(q[1]['desc_x']), # description embedding
                           torch.tensor(q[1]['x']), # modal-specific embedding
                           q[1]['node_type'])

        # Append the extracted subgraph to the dictionary
        subgraphs["nodes"].append(subgraph["nodes"].tolist())
        subgraphs["edges"].append(subgraph["edges"].tolist())

    # Concatenate and get unique node and edge indices
    subgraphs["nodes"] = np.unique(
        np.concatenate([np.array(list_) for list_ in subgraphs["nodes"]])
    )
    subgraphs["edges"] = np.unique(
        np.concatenate([np.array(list_) for list_ in subgraphs["edges"]])
    )

    return subgraphs

_prepare_final_subgraph(state, subgraph, graph, cfg)

Prepare the subgraph based on the extracted subgraph.

Parameters:

Name Type Description Default
state Annotated[dict, InjectedState]

The injected state for the tool.

required
subgraph dict

The extracted subgraph.

required
graph dict

The initial graph containing PyG and textualized graph.

required
cfg

The configuration dictionary.

required

Returns:

Type Description
dict

A dictionary containing the PyG graph, NetworkX graph, and textualized graph.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/multimodal_subgraph_extraction.py
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
def _prepare_final_subgraph(self,
                           state:Annotated[dict, InjectedState],
                           subgraph: dict,
                           graph: dict,
                           cfg) -> dict:
    """
    Prepare the subgraph based on the extracted subgraph.

    Args:
        state: The injected state for the tool.
        subgraph: The extracted subgraph.
        graph: The initial graph containing PyG and textualized graph.
        cfg: The configuration dictionary.

    Returns:
        A dictionary containing the PyG graph, NetworkX graph, and textualized graph.
    """
    # print(subgraph)
    # Prepare the PyTorch Geometric graph
    mapping = {n: i for i, n in enumerate(subgraph["nodes"].tolist())}
    pyg_graph = Data(
        # Node features
        # x=pyg_graph.x[subgraph["nodes"]],
        x=[graph["pyg"].x[i] for i in subgraph["nodes"]],
        node_id=np.array(graph["pyg"].node_id)[subgraph["nodes"]].tolist(),
        node_name=np.array(graph["pyg"].node_id)[subgraph["nodes"]].tolist(),
        enriched_node=np.array(graph["pyg"].enriched_node)[subgraph["nodes"]].tolist(),
        num_nodes=len(subgraph["nodes"]),
        # Edge features
        edge_index=torch.LongTensor(
            [
                [
                    mapping[i]
                    for i in graph["pyg"].edge_index[:, subgraph["edges"]][0].tolist()
                ],
                [
                    mapping[i]
                    for i in graph["pyg"].edge_index[:, subgraph["edges"]][1].tolist()
                ],
            ]
        ),
        edge_attr=graph["pyg"].edge_attr[subgraph["edges"]],
        edge_type=np.array(graph["pyg"].edge_type)[subgraph["edges"]].tolist(),
        relation=np.array(graph["pyg"].edge_type)[subgraph["edges"]].tolist(),
        label=np.array(graph["pyg"].edge_type)[subgraph["edges"]].tolist(),
        enriched_edge=np.array(graph["pyg"].enriched_edge)[subgraph["edges"]].tolist(),
    )

    # Networkx DiGraph construction to be visualized in the frontend
    nx_graph = nx.DiGraph()
    # Add nodes with attributes
    node_colors = {n: cfg.node_colors_dict[k]
                   for k, v in state["selections"].items() for n in v}
    for n in pyg_graph.node_name:
        nx_graph.add_node(n, color=node_colors.get(n, None))

    # Add edges with attributes
    edges = zip(
        pyg_graph.edge_index[0].tolist(),
        pyg_graph.edge_index[1].tolist(),
        pyg_graph.edge_type
    )
    for src, dst, edge_type in edges:
        nx_graph.add_edge(
            pyg_graph.node_name[src],
            pyg_graph.node_name[dst],
            relation=edge_type,
            label=edge_type,
        )

    # Prepare the textualized subgraph
    textualized_graph = (
        graph["text"]["nodes"].iloc[subgraph["nodes"]].to_csv(index=False)
        + "\n"
        + graph["text"]["edges"].iloc[subgraph["edges"]].to_csv(index=False)
    )

    return {
        "graph_pyg": pyg_graph,
        "graph_nx": nx_graph,
        "graph_text": textualized_graph,
    }

_prepare_query_modalities(prompt_emb, state, pyg_graph)

Prepare the modality-specific query for subgraph extraction.

Parameters:

Name Type Description Default
prompt_emb list

The embedding of the user prompt in a list.

required
state Annotated[dict, InjectedState]

The injected state for the tool.

required
pyg_graph Data

The PyTorch Geometric graph Data.

required

Returns:

Type Description
DataFrame

A DataFrame containing the query embeddings and modalities.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/multimodal_subgraph_extraction.py
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
def _prepare_query_modalities(self,
                              prompt_emb: list,
                              state: Annotated[dict, InjectedState],
                              pyg_graph: Data) -> pd.DataFrame:
    """
    Prepare the modality-specific query for subgraph extraction.

    Args:
        prompt_emb: The embedding of the user prompt in a list.
        state: The injected state for the tool.
        pyg_graph: The PyTorch Geometric graph Data.

    Returns:
        A DataFrame containing the query embeddings and modalities.
    """
    # Initialize dataframes
    multimodal_df = pd.DataFrame({"name": []})
    query_df = pd.DataFrame({"node_id": [],
                             "node_type": [],
                             "x": [],
                             "desc_x": [],
                             "use_description": []})

    # Loop over the uploaded files and find multimodal files
    for i in range(len(state["uploaded_files"])):
        # Check if multimodal file is uploaded
        if state["uploaded_files"][i]["file_type"] == "multimodal":
            # Read the Excel file
            multimodal_df = pd.read_excel(state["uploaded_files"][i]["file_path"],
                                          sheet_name=None)

    # Check if the multimodal_df is empty
    if len(multimodal_df) > 0:
        # Merge all obtained dataframes into a single dataframe
        multimodal_df = pd.concat(multimodal_df).reset_index()
        multimodal_df.drop(columns=["level_1"], inplace=True)
        multimodal_df.rename(columns={"level_0": "q_node_type",
                                    "name": "q_node_name"}, inplace=True)
        # Since an excel sheet name could not contain a `/`,
        # but the node type can be 'gene/protein' as exists in the PrimeKG
        multimodal_df["q_node_type"] = multimodal_df.q_node_type.apply(
            lambda x: x.replace('-', '/')
        )

        # Convert PyG graph to a DataFrame for easier filtering
        graph_df = pd.DataFrame({
            "node_id": pyg_graph.node_id,
            "node_name": pyg_graph.node_name,
            "node_type": pyg_graph.node_type,
            "x": pyg_graph.x,
            "desc_x": pyg_graph.desc_x.tolist(),
        })

        # Make a query dataframe by merging the graph_df and multimodal_df
        query_df = graph_df.merge(multimodal_df, how='cross')
        query_df = query_df[
            query_df.apply(
                lambda x:
                (x['q_node_name'].lower() in x['node_name'].lower()) & # node name
                (x['node_type'] == x['q_node_type']), # node type
                axis=1
            )
        ]
        query_df = query_df[['node_id', 'node_type', 'x', 'desc_x']].reset_index(drop=True)
        query_df['use_description'] = False # set to False for modal-specific embeddings

        # Update the state by adding the the selected node IDs
        state["selections"] = query_df.groupby("node_type")["node_id"].apply(list).to_dict()

    # Append a user prompt to the query dataframe
    query_df = pd.concat([
        query_df,
        pd.DataFrame({
            'node_id': 'user_prompt',
            'node_type': 'prompt',
            'x': prompt_emb,
            'desc_x': prompt_emb,
            'use_description': True # set to True for user prompt embedding
        })
    ]).reset_index(drop=True)

    return query_df

_run(tool_call_id, state, prompt, arg_data=None)

Run the subgraph extraction tool.

Parameters:

Name Type Description Default
tool_call_id Annotated[str, InjectedToolCallId]

The tool call ID for the tool.

required
state Annotated[dict, InjectedState]

Injected state for the tool.

required
prompt str

The prompt to interact with the backend.

required
arg_data ArgumentData

The argument data.

None

Returns:

Name Type Description
Command Command

The command to be executed.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/multimodal_subgraph_extraction.py
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
def _run(
    self,
    tool_call_id: Annotated[str, InjectedToolCallId],
    state: Annotated[dict, InjectedState],
    prompt: str,
    arg_data: ArgumentData = None,
) -> Command:
    """
    Run the subgraph extraction tool.

    Args:
        tool_call_id: The tool call ID for the tool.
        state: Injected state for the tool.
        prompt: The prompt to interact with the backend.
        arg_data (ArgumentData): The argument data.

    Returns:
        Command: The command to be executed.
    """
    logger.log(logging.INFO, "Invoking subgraph_extraction tool")

    # Load hydra configuration
    with hydra.initialize(version_base=None, config_path="../configs"):
        cfg = hydra.compose(
            config_name="config", overrides=["tools/multimodal_subgraph_extraction=default"]
        )
        cfg = cfg.tools.multimodal_subgraph_extraction

    # Retrieve source graph from the state
    initial_graph = {}
    initial_graph["source"] = state["dic_source_graph"][-1]  # The last source graph as of now
    # logger.log(logging.INFO, "Source graph: %s", source_graph)

    # Load the knowledge graph
    with open(initial_graph["source"]["kg_pyg_path"], "rb") as f:
        initial_graph["pyg"] = pickle.load(f)
    with open(initial_graph["source"]["kg_text_path"], "rb") as f:
        initial_graph["text"] = pickle.load(f)

    # Prepare the query embeddings and modalities
    query_df = self._prepare_query_modalities(
        [EmbeddingWithOllama(model_name=cfg.ollama_embeddings[0]).embed_query(prompt)],
        state,
        initial_graph["pyg"]
    )

    # Perform subgraph extraction
    subgraphs = self._perform_subgraph_extraction(state,
                                                  cfg,
                                                  initial_graph["pyg"],
                                                  query_df)

    # Prepare subgraph as a NetworkX graph and textualized graph
    final_subgraph = self._prepare_final_subgraph(state,
                                                  subgraphs,
                                                  initial_graph,
                                                  cfg)

    # Prepare the dictionary of extracted graph
    dic_extracted_graph = {
        "name": arg_data.extraction_name,
        "tool_call_id": tool_call_id,
        "graph_source": initial_graph["source"]["name"],
        "topk_nodes": state["topk_nodes"],
        "topk_edges": state["topk_edges"],
        "graph_dict": {
            "nodes": list(final_subgraph["graph_nx"].nodes(data=True)),
            "edges": list(final_subgraph["graph_nx"].edges(data=True)),
        },
        "graph_text": final_subgraph["graph_text"],
        "graph_summary": None,
    }

    # Prepare the dictionary of updated state
    dic_updated_state_for_model = {}
    for key, value in {
        "dic_extracted_graph": [dic_extracted_graph],
    }.items():
        if value:
            dic_updated_state_for_model[key] = value

    # Return the updated state of the tool
    return Command(
        update=dic_updated_state_for_model | {
            # update the message history
            "messages": [
                ToolMessage(
                    content=f"Subgraph Extraction Result of {arg_data.extraction_name}",
                    tool_call_id=tool_call_id,
                )
            ],
        }
    )