Skip to content

Subgraph Extraction (Milvus Multimodal)

Tool for performing multimodal subgraph extraction.

ExtractionParams dataclass

Parameters for subgraph extraction.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py
37
38
39
40
41
42
43
44
45
@dataclass
class ExtractionParams:
    """Parameters for subgraph extraction."""

    state: dict
    cfg: dict
    cfg_db: dict
    query_df: object
    connection_manager: object

MultimodalSubgraphExtractionInput

Bases: BaseModel

MultimodalSubgraphExtractionInput is a Pydantic model representing an input for extracting a subgraph.

Parameters:

Name Type Description Default
prompt

Prompt to interact with the backend.

required
tool_call_id

Tool call ID.

required
state

Injected state.

required
arg_data

Argument for analytical process over graph data.

required
Source code in aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
class MultimodalSubgraphExtractionInput(BaseModel):
    """
    MultimodalSubgraphExtractionInput is a Pydantic model representing an input
    for extracting a subgraph.

    Args:
        prompt: Prompt to interact with the backend.
        tool_call_id: Tool call ID.
        state: Injected state.
        arg_data: Argument for analytical process over graph data.
    """

    tool_call_id: Annotated[str, InjectedToolCallId] = Field(description="Tool call ID.")
    state: Annotated[dict, InjectedState] = Field(description="Injected state.")
    prompt: str = Field(description="Prompt to interact with the backend.")
    arg_data: ArgumentData = Field(description="Experiment over graph data.", default=None)

MultimodalSubgraphExtractionTool

Bases: BaseTool

This tool performs subgraph extraction based on user's prompt by taking into account the top-k nodes and edges.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
class MultimodalSubgraphExtractionTool(BaseTool):
    """
    This tool performs subgraph extraction based on user's prompt by taking into account
    the top-k nodes and edges.
    """

    name: str = "subgraph_extraction"
    description: str = "A tool for subgraph extraction based on user's prompt."
    args_schema: type[BaseModel] = MultimodalSubgraphExtractionInput

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        # Initialize hardware detection and dynamic library loading
        object.__setattr__(self, "detector", SystemDetector())
        object.__setattr__(self, "loader", DynamicLibraryLoader(self.detector))
        logger.info(
            "MultimodalSubgraphExtractionTool initialized with %s mode",
            "GPU" if self.loader.use_gpu else "CPU",
        )

    def _read_multimodal_files(self, state: Annotated[dict, InjectedState]):
        """
        Read the uploaded multimodal files and return a DataFrame.

        Args:
            state: The injected state for the tool.

        Returns:
            A DataFrame containing the multimodal files.
        """
        multimodal_df = self.loader.df.DataFrame({"name": [], "node_type": []})

        # Loop over the uploaded files and find multimodal files
        logger.log(logging.INFO, "Looping over uploaded files")
        for i in range(len(state["uploaded_files"])):
            # Check if multimodal file is uploaded
            if state["uploaded_files"][i]["file_type"] == "multimodal":
                # Read the Excel file
                multimodal_df = pd.read_excel(
                    state["uploaded_files"][i]["file_path"], sheet_name=None
                )

        # Check if the multimodal_df is empty
        logger.log(logging.INFO, "Checking if multimodal_df is empty")
        if len(multimodal_df) > 0:
            # Prepare multimodal_df
            logger.log(logging.INFO, "Preparing multimodal_df")
            # Merge all obtained dataframes into a single dataframe
            multimodal_df = pd.concat(multimodal_df).reset_index()
            multimodal_df = self.loader.df.DataFrame(multimodal_df)
            multimodal_df.drop(columns=["level_1"], inplace=True)
            multimodal_df.rename(
                columns={"level_0": "q_node_type", "name": "q_node_name"}, inplace=True
            )
            # Since an excel sheet name could not contain a `/`,
            # but the node type can be 'gene/protein' as exists in the PrimeKG
            multimodal_df["q_node_type"] = multimodal_df["q_node_type"].str.replace("-", "_")

        return multimodal_df

    def _query_milvus_collection(self, node_type, node_type_df, cfg_db):
        """Helper method to query Milvus collection for a specific node type."""
        # Load the collection
        collection = Collection(
            name=f"{cfg_db.milvus_db.database_name}_nodes_{node_type.replace('/', '_')}"
        )
        collection.load()

        # Query the collection with node names from multimodal_df
        node_names_series = node_type_df["q_node_name"]
        q_node_names = getattr(
            node_names_series, "to_pandas", lambda series=node_names_series: series
        )().tolist()
        q_columns = [
            "node_id",
            "node_name",
            "node_type",
            "feat",
            "feat_emb",
            "desc",
            "desc_emb",
        ]
        res = collection.query(
            expr=f"node_name IN [{','.join(f'"{name}"' for name in q_node_names)}]",
            output_fields=q_columns,
        )
        # Convert the embeedings into floats
        for r_ in res:
            r_["feat_emb"] = [float(x) for x in r_["feat_emb"]]
            r_["desc_emb"] = [float(x) for x in r_["desc_emb"]]

        # Convert the result to a DataFrame
        res_df = self.loader.df.DataFrame(res)[q_columns]
        res_df["use_description"] = False
        return res_df

    async def _query_milvus_collection_async(
        self, node_type, node_type_df, cfg_db, connection_manager
    ):
        """Helper method to query Milvus collection asynchronously for a specific node type."""
        collection_name = f"{cfg_db.milvus_db.database_name}_nodes_{node_type.replace('/', '_')}"

        # Query the collection with node names from multimodal_df
        node_names_series = node_type_df["q_node_name"]
        q_node_names = getattr(
            node_names_series, "to_pandas", lambda series=node_names_series: series
        )().tolist()

        # Create filter expression for async query
        node_names_str = ",".join(f'"{name}"' for name in q_node_names)
        expr = f"node_name IN [{node_names_str}]"

        q_columns = [
            "node_id",
            "node_name",
            "node_type",
            "feat",
            "feat_emb",
            "desc",
            "desc_emb",
        ]

        # Create query parameters and perform async query
        query_params = QueryParams(
            collection_name=collection_name, expr=expr, output_fields=q_columns
        )
        res = await connection_manager.async_query(query_params)

        # Convert the embeddings into floats
        for r_ in res:
            r_["feat_emb"] = [float(x) for x in r_["feat_emb"]]
            r_["desc_emb"] = [float(x) for x in r_["desc_emb"]]

        # Convert the result to a DataFrame
        res_df = (
            self.loader.df.DataFrame(res)[q_columns]
            if res
            else self.loader.df.DataFrame(columns=q_columns)
        )
        res_df["use_description"] = False
        return res_df

    def _prepare_query_modalities(
        self, prompt: dict, state: Annotated[dict, InjectedState], cfg_db: dict
    ):
        """
        Prepare the modality-specific query for subgraph extraction.

        Args:
            prompt: The dictionary containing the user prompt and embeddings.
            state: The injected state for the tool.
            cfg_db: The configuration dictionary for Milvus database.

        Returns:
            A DataFrame containing the query embeddings and modalities.
        """
        # Initialize dataframes
        logger.log(logging.INFO, "Initializing dataframes")
        query_df = []
        prompt_df = self.loader.df.DataFrame(
            {
                "node_id": "user_prompt",
                "node_name": "User Prompt",
                "node_type": "prompt",
                "feat": prompt["text"],
                "feat_emb": prompt["emb"],
                "desc": prompt["text"],
                "desc_emb": prompt["emb"],
                "use_description": True,  # set to True for user prompt embedding
            }
        )

        # Read multimodal files uploaded by the user
        multimodal_df = self._read_multimodal_files(state)

        # Check if the multimodal_df is empty
        logger.log(logging.INFO, "Prepare query modalities")
        if len(multimodal_df) > 0:
            # Query the Milvus database for each node type in multimodal_df
            logger.log(
                logging.INFO,
                "Querying Milvus database for each node type in multimodal_df",
            )
            for node_type, node_type_df in multimodal_df.groupby("q_node_type"):
                print(f"Processing node type: {node_type}")
                res_df = self._query_milvus_collection(node_type, node_type_df, cfg_db)
                query_df.append(res_df)

            # Concatenate all results into a single DataFrame
            logger.log(logging.INFO, "Concatenating all results into a single DataFrame")
            query_df = self.loader.df.concat(query_df, ignore_index=True)

            # Update the state by adding the the selected node IDs
            logger.log(logging.INFO, "Updating state with selected node IDs")
            state["selections"] = (
                getattr(query_df, "to_pandas", lambda: query_df)()
                .groupby("node_type")["node_id"]
                .apply(list)
                .to_dict()
            )

            # Append a user prompt to the query dataframe
            logger.log(logging.INFO, "Adding user prompt to query dataframe")
            query_df = self.loader.df.concat([query_df, prompt_df]).reset_index(drop=True)
        else:
            # If no multimodal files are uploaded, use the prompt embeddings
            query_df = prompt_df

        return query_df

    async def _prepare_query_modalities_async(
        self,
        prompt: dict,
        state: Annotated[dict, InjectedState],
        cfg_db: dict,
        connection_manager,
    ):
        """
        Prepare the modality-specific query for subgraph extraction asynchronously.

        Args:
            prompt: The dictionary containing the user prompt and embeddings
            state: The injected state for the tool
            cfg_db: The configuration dictionary for Milvus database
            connection_manager: The MilvusConnectionManager instance

        Returns:
            A DataFrame containing the query embeddings and modalities
        """
        # Initialize dataframes
        logger.log(logging.INFO, "Initializing dataframes (async)")
        query_df = []
        prompt_df = self.loader.df.DataFrame(
            {
                "node_id": "user_prompt",
                "node_name": "User Prompt",
                "node_type": "prompt",
                "feat": prompt["text"],
                "feat_emb": prompt["emb"],
                "desc": prompt["text"],
                "desc_emb": prompt["emb"],
                "use_description": True,  # set to True for user prompt embedding
            }
        )

        # Read multimodal files uploaded by the user
        multimodal_df = self._read_multimodal_files(state)

        # Check if the multimodal_df is empty
        logger.log(logging.INFO, "Prepare query modalities (async)")
        if len(multimodal_df) > 0:
            # Create parallel tasks for querying each node type
            logger.log(
                logging.INFO,
                "Querying Milvus database for each node type in multimodal_df (parallel)",
            )

            # Create async tasks for each node type
            tasks = []
            for node_type, node_type_df in multimodal_df.groupby("q_node_type"):
                print(f"Processing node type: {node_type}")
                task = self._query_milvus_collection_async(
                    node_type, node_type_df, cfg_db, connection_manager
                )
                tasks.append(task)

            # Execute all queries in parallel using hybrid approach
            if len(tasks) == 1:
                # Single task, run directly
                query_results = [await tasks[0]]
            else:
                # Multiple tasks, but use sequential execution to avoid event loop issues
                query_results = []
                for task in tasks:
                    result = await task
                    query_results.append(result)

            query_df.extend(query_results)

            # Concatenate all results into a single DataFrame
            logger.log(logging.INFO, "Concatenating all results into a single DataFrame")
            query_df = self.loader.df.concat(query_df, ignore_index=True)

            # Update the state by adding the selected node IDs
            logger.log(logging.INFO, "Updating state with selected node IDs")
            state["selections"] = (
                getattr(query_df, "to_pandas", lambda: query_df)()
                .groupby("node_type")["node_id"]
                .apply(list)
                .to_dict()
            )

            # Append a user prompt to the query dataframe
            logger.log(logging.INFO, "Adding user prompt to query dataframe")
            query_df = self.loader.df.concat([query_df, prompt_df]).reset_index(drop=True)
        else:
            # If no multimodal files are uploaded, use the prompt embeddings
            query_df = prompt_df

        return query_df

    def _perform_subgraph_extraction(
        self,
        state: Annotated[dict, InjectedState],
        cfg: dict,
        cfg_db: dict,
        query_df: pd.DataFrame,
    ) -> dict:
        """
        Perform multimodal subgraph extraction based on modal-specific embeddings.

        Args:
            state: The injected state for the tool.
            cfg: The configuration dictionary.
            cfg_db: The configuration dictionary for Milvus database.
            query_df: The DataFrame containing the query embeddings and modalities.

        Returns:
            A dictionary containing the extracted subgraph with nodes and edges.
        """
        # Initialize the subgraph dictionary
        subgraphs = []
        unified_subgraph = {"nodes": [], "edges": []}
        # subgraphs = {}
        # subgraphs["nodes"] = []
        # subgraphs["edges"] = []

        # Loop over query embeddings and modalities
        for q in getattr(query_df, "to_pandas", lambda: query_df)().iterrows():
            logger.log(logging.INFO, "===========================================")
            logger.log(logging.INFO, "Processing query: %s", q[1]["node_name"])
            # Prepare the PCSTPruning object and extract the subgraph
            # Parameters were set in the configuration file obtained from Hydra
            # start = datetime.datetime.now()
            # Get dynamic metric type (overrides any config setting)
            # Get dynamic metric type (overrides any config setting)
            has_vector_processing = hasattr(cfg, "vector_processing")
            if has_vector_processing:
                dynamic_metrics_enabled = getattr(cfg.vector_processing, "dynamic_metrics", True)
            else:
                dynamic_metrics_enabled = False
            if has_vector_processing and dynamic_metrics_enabled:
                dynamic_metric_type = self.loader.metric_type
            else:
                dynamic_metric_type = getattr(cfg, "search_metric_type", self.loader.metric_type)

            subgraph = MultimodalPCSTPruning(
                topk=state["topk_nodes"],
                topk_e=state["topk_edges"],
                cost_e=cfg.cost_e,
                c_const=cfg.c_const,
                root=cfg.root,
                num_clusters=cfg.num_clusters,
                pruning=cfg.pruning,
                verbosity_level=cfg.verbosity_level,
                use_description=q[1]["use_description"],
                metric_type=dynamic_metric_type,  # Use dynamic or config metric type
                loader=self.loader,  # Pass the loader instance
            ).extract_subgraph(q[1]["desc_emb"], q[1]["feat_emb"], q[1]["node_type"], cfg_db)

            # Append the extracted subgraph to the dictionary
            unified_subgraph["nodes"].append(subgraph["nodes"].tolist())
            unified_subgraph["edges"].append(subgraph["edges"].tolist())
            subgraphs.append(
                (
                    q[1]["node_name"],
                    subgraph["nodes"].tolist(),
                    subgraph["edges"].tolist(),
                )
            )

            # end = datetime.datetime.now()
            # logger.log(logging.INFO, "Subgraph extraction time: %s seconds",
            #            (end - start).total_seconds())

        # Concatenate and get unique node and edge indices
        nodes_arrays = [self.loader.py.array(list_) for list_ in unified_subgraph["nodes"]]
        unified_subgraph["nodes"] = self.loader.py.unique(
            self.loader.py.concatenate(nodes_arrays)
        ).tolist()
        edges_arrays = [self.loader.py.array(list_) for list_ in unified_subgraph["edges"]]
        unified_subgraph["edges"] = self.loader.py.unique(
            self.loader.py.concatenate(edges_arrays)
        ).tolist()

        # Convert the unified subgraph and subgraphs to DataFrames
        unified_subgraph = self.loader.df.DataFrame(
            [
                (
                    "Unified Subgraph",
                    unified_subgraph["nodes"],
                    unified_subgraph["edges"],
                )
            ],
            columns=["name", "nodes", "edges"],
        )
        subgraphs = self.loader.df.DataFrame(subgraphs, columns=["name", "nodes", "edges"])

        # Concatenate both DataFrames
        subgraphs = self.loader.df.concat([unified_subgraph, subgraphs], ignore_index=True)

        return subgraphs

    async def _perform_subgraph_extraction_async(self, params: ExtractionParams) -> dict:
        """
        Perform multimodal subgraph extraction based on modal-specific embeddings asynchronously.

        Args:
            state: The injected state for the tool
            cfg: The configuration dictionary
            cfg_db: The configuration dictionary for Milvus database
            query_df: The DataFrame containing the query embeddings and modalities
            connection_manager: The MilvusConnectionManager instance

        Returns:
            A dictionary containing the extracted subgraph with nodes and edges
        """
        # Initialize the subgraph dictionary
        subgraphs = []
        unified_subgraph = {"nodes": [], "edges": []}

        # Create parallel tasks for each query
        tasks = []
        query_info = []

        for q in getattr(params.query_df, "to_pandas", lambda: params.query_df)().iterrows():
            logger.log(logging.INFO, "===========================================")
            logger.log(logging.INFO, "Processing query: %s", q[1]["node_name"])

            # Store query info for later processing
            query_info.append(q[1])

            # Get dynamic metric type using helper method
            dynamic_metric_type = self._get_dynamic_metric_type(params.cfg)

            # Create PCST pruning instance using helper
            pcst_instance = self._create_pcst_instance(params, q[1], dynamic_metric_type)

            # Create async task for subgraph extraction
            task = self._extract_single_subgraph_async(
                pcst_instance, q[1], params.cfg_db, params.connection_manager
            )
            tasks.append(task)

        # Execute all subgraph extractions sequentially to avoid event loop conflicts
        subgraph_results = []
        for i, task in enumerate(tasks):
            logger.log(logging.INFO, "Processing subgraph %d/%d", i + 1, len(tasks))
            result = await task
            subgraph_results.append(result)

        # Process results and finalize
        self._process_subgraph_results(subgraph_results, query_info, unified_subgraph, subgraphs)
        return self._finalize_subgraph_results(subgraphs, unified_subgraph)

    def _process_subgraph_results(self, subgraph_results, query_info, unified_subgraph, subgraphs):
        """Process individual subgraph results."""
        for i, subgraph in enumerate(subgraph_results):
            query_row = query_info[i]
            unified_subgraph["nodes"].append(subgraph["nodes"].tolist())
            unified_subgraph["edges"].append(subgraph["edges"].tolist())
            subgraphs.append(
                (
                    query_row["node_name"],
                    subgraph["nodes"].tolist(),
                    subgraph["edges"].tolist(),
                )
            )

    def _finalize_subgraph_results(self, subgraphs, unified_subgraph):
        """Process and finalize subgraph results into DataFrames."""
        # Concatenate and get unique node and edge indices
        nodes_arrays = [self.loader.py.array(list_) for list_ in unified_subgraph["nodes"]]
        unified_subgraph["nodes"] = self.loader.py.unique(
            self.loader.py.concatenate(nodes_arrays)
        ).tolist()
        edges_arrays = [self.loader.py.array(list_) for list_ in unified_subgraph["edges"]]
        unified_subgraph["edges"] = self.loader.py.unique(
            self.loader.py.concatenate(edges_arrays)
        ).tolist()

        # Convert the unified subgraph and subgraphs to DataFrames
        unified_subgraph_df = self.loader.df.DataFrame(
            [
                (
                    "Unified Subgraph",
                    unified_subgraph["nodes"],
                    unified_subgraph["edges"],
                )
            ],
            columns=["name", "nodes", "edges"],
        )
        subgraphs_df = self.loader.df.DataFrame(subgraphs, columns=["name", "nodes", "edges"])

        # Concatenate both DataFrames
        return self.loader.df.concat([unified_subgraph_df, subgraphs_df], ignore_index=True)

    async def _extract_single_subgraph_async(
        self, pcst_instance, query_row, cfg_db, connection_manager
    ):
        """
        Extract a single subgraph asynchronously using the new async methods.
        """
        # Load data and compute prizes
        edge_index, prizes, num_nodes = await self._load_subgraph_data(
            pcst_instance, query_row, cfg_db, connection_manager
        )

        # Run PCST algorithm and get results
        return self._run_pcst_algorithm(pcst_instance, edge_index, num_nodes, prizes)

    async def _load_subgraph_data(self, pcst_instance, query_row, cfg_db, connection_manager):
        """Load edge index, compute prizes, and get node count."""
        # Load edge index asynchronously
        edge_index = await pcst_instance.load_edge_index_async(cfg_db, connection_manager)

        # Compute prizes asynchronously
        prizes = await pcst_instance.compute_prizes_async(
            query_row["desc_emb"],
            query_row["feat_emb"],
            cfg_db,
            query_row["node_type"],
        )

        # Get number of nodes
        nodes_collection = f"{cfg_db.milvus_db.database_name}_nodes"
        stats = await connection_manager.async_get_collection_stats(nodes_collection)
        num_nodes = stats["num_entities"]

        return edge_index, prizes, num_nodes

    def _run_pcst_algorithm(self, pcst_instance, edge_index, num_nodes, prizes):
        """Run PCST algorithm and get subgraph results."""
        # Compute costs in constructing the subgraph
        edges_dict, prizes_final, costs, mapping = pcst_instance.compute_subgraph_costs(
            edge_index, num_nodes, prizes
        )

        # Retrieve the subgraph using the PCST algorithm
        result_vertices, result_edges = pcst_fast.pcst_fast(
            edges_dict["edges"].tolist(),
            prizes_final.tolist(),
            costs.tolist(),
            pcst_instance.root,
            pcst_instance.num_clusters,
            pcst_instance.pruning,
            pcst_instance.verbosity_level,
        )

        # Get subgraph nodes and edges based on the PCST result
        return pcst_instance.get_subgraph_nodes_edges(
            num_nodes,
            pcst_instance.loader.py.asarray(result_vertices),
            {
                "edges": pcst_instance.loader.py.asarray(result_edges),
                "num_prior_edges": edges_dict["num_prior_edges"],
                "edge_index": edge_index,
            },
            mapping,
        )

    def _run(
        self,
        tool_call_id: Annotated[str, InjectedToolCallId],
        state: Annotated[dict, InjectedState],
        prompt: str,
        arg_data: ArgumentData = None,
    ) -> Command:
        """
        Synchronous wrapper for the async _run_async method.
        This maintains compatibility with LangGraph while using async operations internally.
        """
        # concurrent.futures imported at top level

        def run_in_thread():
            """Run async method in a new thread with its own event loop."""
            # Create a new event loop for this thread
            new_loop = asyncio.new_event_loop()
            asyncio.set_event_loop(new_loop)
            try:
                result = new_loop.run_until_complete(
                    self._run_async(tool_call_id, state, prompt, arg_data)
                )
                return result
            finally:
                # Properly cleanup the event loop
                new_loop.close()
                asyncio.set_event_loop(None)

        # Always use a separate thread to avoid event loop conflicts
        with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
            future = executor.submit(run_in_thread)
            return future.result()

    def _prepare_final_subgraph(
        self, state: Annotated[dict, InjectedState], subgraph: dict, cfg_db
    ) -> dict:
        """
        Prepare the subgraph based on the extracted subgraph.

        Args:
            state: The injected state for the tool.
            subgraph: The extracted subgraph.
            cfg_db: The configuration dictionary for Milvus database.

        Returns:
            A dictionary containing the PyG graph, NetworkX graph, and textualized graph.
        """
        # Convert the dict to a DataFrame
        node_colors = {
            n: cfg_db.node_colors_dict[k] for k, v in state["selections"].items() for n in v
        }
        color_df = self.loader.df.DataFrame(list(node_colors.items()), columns=["node_id", "color"])
        # print(color_df)

        # Prepare the subgraph dictionary
        graph_dict = {"name": [], "nodes": [], "edges": [], "text": ""}
        for sub in getattr(subgraph, "to_pandas", lambda: subgraph)().itertuples(index=False):
            graph_nodes, graph_edges = self._process_subgraph_data(sub, cfg_db, color_df)

            # Prepare lists for visualization
            graph_dict["name"].append(sub.name)
            graph_dict["nodes"].append(
                [
                    (
                        row.node_id,
                        {
                            "hover": "Node Name : "
                            + row.node_name
                            + "\n"
                            + "Node Type : "
                            + row.node_type
                            + "\n"
                            + "Desc : "
                            + row.desc,
                            "click": "$hover",
                            "color": row.color,
                        },
                    )
                    for row in getattr(
                        graph_nodes,
                        "to_pandas",
                        lambda graph_nodes=graph_nodes: graph_nodes,
                    )().itertuples(index=False)
                ]
            )
            graph_dict["edges"].append(
                [
                    (row.head_id, row.tail_id, {"label": tuple(row.edge_type)})
                    for row in getattr(
                        graph_edges,
                        "to_pandas",
                        lambda graph_edges=graph_edges: graph_edges,
                    )().itertuples(index=False)
                ]
            )

            # Prepare the textualized subgraph
            if sub.name == "Unified Subgraph":
                graph_nodes = graph_nodes[["node_id", "desc"]]
                graph_nodes.rename(columns={"desc": "node_attr"}, inplace=True)
                graph_edges = graph_edges[["head_id", "edge_type", "tail_id"]]
                nodes_pandas = getattr(
                    graph_nodes,
                    "to_pandas",
                    lambda graph_nodes=graph_nodes: graph_nodes,
                )()
                nodes_csv = nodes_pandas.to_csv(index=False)
                edges_pandas = getattr(
                    graph_edges,
                    "to_pandas",
                    lambda graph_edges=graph_edges: graph_edges,
                )()
                edges_csv = edges_pandas.to_csv(index=False)
                graph_dict["text"] = nodes_csv + "\n" + edges_csv

        return graph_dict

    def _process_subgraph_data(self, sub, cfg_db, color_df):
        """Helper method to process individual subgraph data."""
        print(f"Processing subgraph: {sub.name}")
        print("---")
        print(sub.nodes)
        print("---")
        print(sub.edges)
        print("---")

        # Prepare graph dataframes - Nodes
        coll_name = f"{cfg_db.milvus_db.database_name}_nodes"
        node_coll = Collection(name=coll_name)
        node_coll.load()
        graph_nodes = node_coll.query(
            expr=f"node_index IN [{','.join(f'{n}' for n in sub.nodes)}]",
            output_fields=["node_id", "node_name", "node_type", "desc"],
        )
        graph_nodes = self.loader.df.DataFrame(graph_nodes)
        graph_nodes.drop(columns=["node_index"], inplace=True)
        if not color_df.empty:
            graph_nodes = graph_nodes.merge(color_df, on="node_id", how="left")
        else:
            graph_nodes["color"] = "black"
        graph_nodes["color"] = graph_nodes["color"].fillna("black")

        # Edges
        coll_name = f"{cfg_db.milvus_db.database_name}_edges"
        edge_coll = Collection(name=coll_name)
        edge_coll.load()
        graph_edges = edge_coll.query(
            expr=f"triplet_index IN [{','.join(f'{e}' for e in sub.edges)}]",
            output_fields=["head_id", "tail_id", "edge_type"],
        )
        graph_edges = self.loader.df.DataFrame(graph_edges)
        graph_edges.drop(columns=["triplet_index"], inplace=True)
        graph_edges["edge_type"] = graph_edges["edge_type"].str.split("|")

        return graph_nodes, graph_edges

    def _get_dynamic_metric_type(self, cfg: dict) -> str:
        """Helper method to get dynamic metric type."""
        has_vector_processing = hasattr(cfg, "vector_processing")
        if has_vector_processing:
            dynamic_metrics_enabled = getattr(cfg.vector_processing, "dynamic_metrics", True)
        else:
            dynamic_metrics_enabled = False
        if has_vector_processing and dynamic_metrics_enabled:
            return self.loader.metric_type
        return getattr(cfg, "search_metric_type", self.loader.metric_type)

    def _create_pcst_instance(
        self, params: ExtractionParams, query_row: dict, dynamic_metric_type: str
    ) -> MultimodalPCSTPruning:
        """Helper method to create PCST pruning instance."""
        return MultimodalPCSTPruning(
            topk=params.state["topk_nodes"],
            topk_e=params.state["topk_edges"],
            cost_e=params.cfg.cost_e,
            c_const=params.cfg.c_const,
            root=params.cfg.root,
            num_clusters=params.cfg.num_clusters,
            pruning=params.cfg.pruning,
            verbosity_level=params.cfg.verbosity_level,
            use_description=query_row["use_description"],
            metric_type=dynamic_metric_type,
            loader=self.loader,
        )

    def normalize_vector(self, v: list) -> list:
        """
        Normalize a vector using appropriate library (CuPy for GPU, NumPy for CPU).

        Args:
            v : Vector to normalize.

        Returns:
            Normalized vector.
        """
        if self.loader.normalize_vectors:
            # GPU mode: normalize the vector
            v_array = self.loader.py.asarray(v)
            norm = self.loader.py.linalg.norm(v_array)
            return (v_array / norm).tolist()
        # CPU mode: return as-is for COSINE similarity
        return v

    async def _run_async(
        self,
        tool_call_id: Annotated[str, InjectedToolCallId],
        state: Annotated[dict, InjectedState],
        prompt: str,
        arg_data: ArgumentData = None,
    ) -> Command:
        """
        Run the subgraph extraction tool.

        Args:
            tool_call_id: The tool call ID for the tool.
            state: Injected state for the tool.
            prompt: The prompt to interact with the backend.
            arg_data (ArgumentData): The argument data.

        Returns:
            Command: The command to be executed.
        """
        logger.log(logging.INFO, "Invoking subgraph_extraction tool")

        # Load hydra configuration
        with hydra.initialize(version_base=None, config_path="../configs"):
            cfg = hydra.compose(
                config_name="config",
                overrides=["tools/multimodal_subgraph_extraction=default"],
            )
            cfg = cfg.tools.multimodal_subgraph_extraction

        # Load database configuration separately
        with hydra.initialize(version_base=None, config_path="../configs"):
            cfg_all = hydra.compose(config_name="config")
            cfg_db = cfg_all.utils.database.milvus

        # Establish Milvus connection using singleton connection manager
        logger.log(logging.INFO, "Getting Milvus connection manager (singleton)")
        connection_manager = MilvusConnectionManager(cfg_db)
        try:
            connection_manager.ensure_connection()
            logger.log(logging.INFO, "Milvus connection established successfully")

            # Log connection info
            conn_info = connection_manager.get_connection_info()
            logger.log(logging.INFO, "Connected to database: %s", conn_info.get("database"))
            logger.log(
                logging.INFO,
                "Connection healthy: %s",
                connection_manager.test_connection(),
            )
        except Exception as e:
            logger.error("Failed to establish Milvus connection: %s", str(e))
            raise RuntimeError(f"Cannot connect to Milvus database: {str(e)}") from e

        # Prepare the query embeddings and modalities (async)
        logger.log(logging.INFO, "_prepare_query_modalities_async")
        query_df = await self._prepare_query_modalities_async(
            {
                "text": prompt,
                "emb": [self.normalize_vector(state["embedding_model"].embed_query(prompt))],
            },
            state,
            cfg_db,
            connection_manager,
        )

        # Perform subgraph extraction (async)
        logger.log(logging.INFO, "_perform_subgraph_extraction_async")
        extraction_params = ExtractionParams(
            state=state,
            cfg=cfg,
            cfg_db=cfg_db,
            query_df=query_df,
            connection_manager=connection_manager,
        )
        subgraphs = await self._perform_subgraph_extraction_async(extraction_params)

        # Prepare subgraph as a NetworkX graph and textualized graph
        logger.log(logging.INFO, "_prepare_final_subgraph")
        logger.log(logging.INFO, "Subgraphs extracted: %s", len(subgraphs))
        # start = datetime.datetime.now()
        final_subgraph = self._prepare_final_subgraph(state, subgraphs, cfg_db)
        # end = datetime.datetime.now()
        # logger.log(logging.INFO, "_prepare_final_subgraph time: %s seconds",
        #            (end - start).total_seconds())

        # Create final result and return command
        return self._create_extraction_result(tool_call_id, state, final_subgraph, arg_data)

    def _create_extraction_result(self, tool_call_id, state, final_subgraph, arg_data):
        """Create the final extraction result and command."""
        # Prepare the dictionary of extracted graph
        logger.log(logging.INFO, "dic_extracted_graph")
        dic_extracted_graph = {
            "name": arg_data.extraction_name,
            "tool_call_id": tool_call_id,
            "graph_source": state["dic_source_graph"][0]["name"],
            "topk_nodes": state["topk_nodes"],
            "topk_edges": state["topk_edges"],
            "graph_dict": {
                "name": final_subgraph["name"],
                "nodes": final_subgraph["nodes"],
                "edges": final_subgraph["edges"],
            },
            "graph_text": final_subgraph["text"],
            "graph_summary": None,
        }

        # Debug logging
        logger.info(
            "Created dic_extracted_graph with keys: %s",
            list(dic_extracted_graph.keys()),
        )
        logger.info(
            "Graph dict structure - name count: %d, nodes count: %d, edges count: %d",
            len(dic_extracted_graph["graph_dict"]["name"]),
            len(dic_extracted_graph["graph_dict"]["nodes"]),
            len(dic_extracted_graph["graph_dict"]["edges"]),
        )

        # Create success message
        success_message = (
            f"Successfully extracted subgraph '{arg_data.extraction_name}' "
            f"with {len(final_subgraph['name'])} graph(s). The subgraph contains "
            f"{sum(len(nodes) for nodes in final_subgraph['nodes'])} nodes and "
            f"{sum(len(edges) for edges in final_subgraph['edges'])} edges. "
            "The extracted subgraph has been stored and is ready for "
            "visualization and analysis."
        )

        # Return the command with updated state
        return Command(
            update={"dic_extracted_graph": [dic_extracted_graph]}
            | {
                "messages": [ToolMessage(content=success_message, tool_call_id=tool_call_id)],
            }
        )

_create_extraction_result(tool_call_id, state, final_subgraph, arg_data)

Create the final extraction result and command.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
def _create_extraction_result(self, tool_call_id, state, final_subgraph, arg_data):
    """Create the final extraction result and command."""
    # Prepare the dictionary of extracted graph
    logger.log(logging.INFO, "dic_extracted_graph")
    dic_extracted_graph = {
        "name": arg_data.extraction_name,
        "tool_call_id": tool_call_id,
        "graph_source": state["dic_source_graph"][0]["name"],
        "topk_nodes": state["topk_nodes"],
        "topk_edges": state["topk_edges"],
        "graph_dict": {
            "name": final_subgraph["name"],
            "nodes": final_subgraph["nodes"],
            "edges": final_subgraph["edges"],
        },
        "graph_text": final_subgraph["text"],
        "graph_summary": None,
    }

    # Debug logging
    logger.info(
        "Created dic_extracted_graph with keys: %s",
        list(dic_extracted_graph.keys()),
    )
    logger.info(
        "Graph dict structure - name count: %d, nodes count: %d, edges count: %d",
        len(dic_extracted_graph["graph_dict"]["name"]),
        len(dic_extracted_graph["graph_dict"]["nodes"]),
        len(dic_extracted_graph["graph_dict"]["edges"]),
    )

    # Create success message
    success_message = (
        f"Successfully extracted subgraph '{arg_data.extraction_name}' "
        f"with {len(final_subgraph['name'])} graph(s). The subgraph contains "
        f"{sum(len(nodes) for nodes in final_subgraph['nodes'])} nodes and "
        f"{sum(len(edges) for edges in final_subgraph['edges'])} edges. "
        "The extracted subgraph has been stored and is ready for "
        "visualization and analysis."
    )

    # Return the command with updated state
    return Command(
        update={"dic_extracted_graph": [dic_extracted_graph]}
        | {
            "messages": [ToolMessage(content=success_message, tool_call_id=tool_call_id)],
        }
    )

_create_pcst_instance(params, query_row, dynamic_metric_type)

Helper method to create PCST pruning instance.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
def _create_pcst_instance(
    self, params: ExtractionParams, query_row: dict, dynamic_metric_type: str
) -> MultimodalPCSTPruning:
    """Helper method to create PCST pruning instance."""
    return MultimodalPCSTPruning(
        topk=params.state["topk_nodes"],
        topk_e=params.state["topk_edges"],
        cost_e=params.cfg.cost_e,
        c_const=params.cfg.c_const,
        root=params.cfg.root,
        num_clusters=params.cfg.num_clusters,
        pruning=params.cfg.pruning,
        verbosity_level=params.cfg.verbosity_level,
        use_description=query_row["use_description"],
        metric_type=dynamic_metric_type,
        loader=self.loader,
    )

_extract_single_subgraph_async(pcst_instance, query_row, cfg_db, connection_manager) async

Extract a single subgraph asynchronously using the new async methods.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py
563
564
565
566
567
568
569
570
571
572
573
574
575
async def _extract_single_subgraph_async(
    self, pcst_instance, query_row, cfg_db, connection_manager
):
    """
    Extract a single subgraph asynchronously using the new async methods.
    """
    # Load data and compute prizes
    edge_index, prizes, num_nodes = await self._load_subgraph_data(
        pcst_instance, query_row, cfg_db, connection_manager
    )

    # Run PCST algorithm and get results
    return self._run_pcst_algorithm(pcst_instance, edge_index, num_nodes, prizes)

_finalize_subgraph_results(subgraphs, unified_subgraph)

Process and finalize subgraph results into DataFrames.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
def _finalize_subgraph_results(self, subgraphs, unified_subgraph):
    """Process and finalize subgraph results into DataFrames."""
    # Concatenate and get unique node and edge indices
    nodes_arrays = [self.loader.py.array(list_) for list_ in unified_subgraph["nodes"]]
    unified_subgraph["nodes"] = self.loader.py.unique(
        self.loader.py.concatenate(nodes_arrays)
    ).tolist()
    edges_arrays = [self.loader.py.array(list_) for list_ in unified_subgraph["edges"]]
    unified_subgraph["edges"] = self.loader.py.unique(
        self.loader.py.concatenate(edges_arrays)
    ).tolist()

    # Convert the unified subgraph and subgraphs to DataFrames
    unified_subgraph_df = self.loader.df.DataFrame(
        [
            (
                "Unified Subgraph",
                unified_subgraph["nodes"],
                unified_subgraph["edges"],
            )
        ],
        columns=["name", "nodes", "edges"],
    )
    subgraphs_df = self.loader.df.DataFrame(subgraphs, columns=["name", "nodes", "edges"])

    # Concatenate both DataFrames
    return self.loader.df.concat([unified_subgraph_df, subgraphs_df], ignore_index=True)

_get_dynamic_metric_type(cfg)

Helper method to get dynamic metric type.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py
783
784
785
786
787
788
789
790
791
792
def _get_dynamic_metric_type(self, cfg: dict) -> str:
    """Helper method to get dynamic metric type."""
    has_vector_processing = hasattr(cfg, "vector_processing")
    if has_vector_processing:
        dynamic_metrics_enabled = getattr(cfg.vector_processing, "dynamic_metrics", True)
    else:
        dynamic_metrics_enabled = False
    if has_vector_processing and dynamic_metrics_enabled:
        return self.loader.metric_type
    return getattr(cfg, "search_metric_type", self.loader.metric_type)

_load_subgraph_data(pcst_instance, query_row, cfg_db, connection_manager) async

Load edge index, compute prizes, and get node count.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
async def _load_subgraph_data(self, pcst_instance, query_row, cfg_db, connection_manager):
    """Load edge index, compute prizes, and get node count."""
    # Load edge index asynchronously
    edge_index = await pcst_instance.load_edge_index_async(cfg_db, connection_manager)

    # Compute prizes asynchronously
    prizes = await pcst_instance.compute_prizes_async(
        query_row["desc_emb"],
        query_row["feat_emb"],
        cfg_db,
        query_row["node_type"],
    )

    # Get number of nodes
    nodes_collection = f"{cfg_db.milvus_db.database_name}_nodes"
    stats = await connection_manager.async_get_collection_stats(nodes_collection)
    num_nodes = stats["num_entities"]

    return edge_index, prizes, num_nodes

_perform_subgraph_extraction(state, cfg, cfg_db, query_df)

Perform multimodal subgraph extraction based on modal-specific embeddings.

Parameters:

Name Type Description Default
state Annotated[dict, InjectedState]

The injected state for the tool.

required
cfg dict

The configuration dictionary.

required
cfg_db dict

The configuration dictionary for Milvus database.

required
query_df DataFrame

The DataFrame containing the query embeddings and modalities.

required

Returns:

Type Description
dict

A dictionary containing the extracted subgraph with nodes and edges.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
def _perform_subgraph_extraction(
    self,
    state: Annotated[dict, InjectedState],
    cfg: dict,
    cfg_db: dict,
    query_df: pd.DataFrame,
) -> dict:
    """
    Perform multimodal subgraph extraction based on modal-specific embeddings.

    Args:
        state: The injected state for the tool.
        cfg: The configuration dictionary.
        cfg_db: The configuration dictionary for Milvus database.
        query_df: The DataFrame containing the query embeddings and modalities.

    Returns:
        A dictionary containing the extracted subgraph with nodes and edges.
    """
    # Initialize the subgraph dictionary
    subgraphs = []
    unified_subgraph = {"nodes": [], "edges": []}
    # subgraphs = {}
    # subgraphs["nodes"] = []
    # subgraphs["edges"] = []

    # Loop over query embeddings and modalities
    for q in getattr(query_df, "to_pandas", lambda: query_df)().iterrows():
        logger.log(logging.INFO, "===========================================")
        logger.log(logging.INFO, "Processing query: %s", q[1]["node_name"])
        # Prepare the PCSTPruning object and extract the subgraph
        # Parameters were set in the configuration file obtained from Hydra
        # start = datetime.datetime.now()
        # Get dynamic metric type (overrides any config setting)
        # Get dynamic metric type (overrides any config setting)
        has_vector_processing = hasattr(cfg, "vector_processing")
        if has_vector_processing:
            dynamic_metrics_enabled = getattr(cfg.vector_processing, "dynamic_metrics", True)
        else:
            dynamic_metrics_enabled = False
        if has_vector_processing and dynamic_metrics_enabled:
            dynamic_metric_type = self.loader.metric_type
        else:
            dynamic_metric_type = getattr(cfg, "search_metric_type", self.loader.metric_type)

        subgraph = MultimodalPCSTPruning(
            topk=state["topk_nodes"],
            topk_e=state["topk_edges"],
            cost_e=cfg.cost_e,
            c_const=cfg.c_const,
            root=cfg.root,
            num_clusters=cfg.num_clusters,
            pruning=cfg.pruning,
            verbosity_level=cfg.verbosity_level,
            use_description=q[1]["use_description"],
            metric_type=dynamic_metric_type,  # Use dynamic or config metric type
            loader=self.loader,  # Pass the loader instance
        ).extract_subgraph(q[1]["desc_emb"], q[1]["feat_emb"], q[1]["node_type"], cfg_db)

        # Append the extracted subgraph to the dictionary
        unified_subgraph["nodes"].append(subgraph["nodes"].tolist())
        unified_subgraph["edges"].append(subgraph["edges"].tolist())
        subgraphs.append(
            (
                q[1]["node_name"],
                subgraph["nodes"].tolist(),
                subgraph["edges"].tolist(),
            )
        )

        # end = datetime.datetime.now()
        # logger.log(logging.INFO, "Subgraph extraction time: %s seconds",
        #            (end - start).total_seconds())

    # Concatenate and get unique node and edge indices
    nodes_arrays = [self.loader.py.array(list_) for list_ in unified_subgraph["nodes"]]
    unified_subgraph["nodes"] = self.loader.py.unique(
        self.loader.py.concatenate(nodes_arrays)
    ).tolist()
    edges_arrays = [self.loader.py.array(list_) for list_ in unified_subgraph["edges"]]
    unified_subgraph["edges"] = self.loader.py.unique(
        self.loader.py.concatenate(edges_arrays)
    ).tolist()

    # Convert the unified subgraph and subgraphs to DataFrames
    unified_subgraph = self.loader.df.DataFrame(
        [
            (
                "Unified Subgraph",
                unified_subgraph["nodes"],
                unified_subgraph["edges"],
            )
        ],
        columns=["name", "nodes", "edges"],
    )
    subgraphs = self.loader.df.DataFrame(subgraphs, columns=["name", "nodes", "edges"])

    # Concatenate both DataFrames
    subgraphs = self.loader.df.concat([unified_subgraph, subgraphs], ignore_index=True)

    return subgraphs

_perform_subgraph_extraction_async(params) async

Perform multimodal subgraph extraction based on modal-specific embeddings asynchronously.

Parameters:

Name Type Description Default
state

The injected state for the tool

required
cfg

The configuration dictionary

required
cfg_db

The configuration dictionary for Milvus database

required
query_df

The DataFrame containing the query embeddings and modalities

required
connection_manager

The MilvusConnectionManager instance

required

Returns:

Type Description
dict

A dictionary containing the extracted subgraph with nodes and edges

Source code in aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
async def _perform_subgraph_extraction_async(self, params: ExtractionParams) -> dict:
    """
    Perform multimodal subgraph extraction based on modal-specific embeddings asynchronously.

    Args:
        state: The injected state for the tool
        cfg: The configuration dictionary
        cfg_db: The configuration dictionary for Milvus database
        query_df: The DataFrame containing the query embeddings and modalities
        connection_manager: The MilvusConnectionManager instance

    Returns:
        A dictionary containing the extracted subgraph with nodes and edges
    """
    # Initialize the subgraph dictionary
    subgraphs = []
    unified_subgraph = {"nodes": [], "edges": []}

    # Create parallel tasks for each query
    tasks = []
    query_info = []

    for q in getattr(params.query_df, "to_pandas", lambda: params.query_df)().iterrows():
        logger.log(logging.INFO, "===========================================")
        logger.log(logging.INFO, "Processing query: %s", q[1]["node_name"])

        # Store query info for later processing
        query_info.append(q[1])

        # Get dynamic metric type using helper method
        dynamic_metric_type = self._get_dynamic_metric_type(params.cfg)

        # Create PCST pruning instance using helper
        pcst_instance = self._create_pcst_instance(params, q[1], dynamic_metric_type)

        # Create async task for subgraph extraction
        task = self._extract_single_subgraph_async(
            pcst_instance, q[1], params.cfg_db, params.connection_manager
        )
        tasks.append(task)

    # Execute all subgraph extractions sequentially to avoid event loop conflicts
    subgraph_results = []
    for i, task in enumerate(tasks):
        logger.log(logging.INFO, "Processing subgraph %d/%d", i + 1, len(tasks))
        result = await task
        subgraph_results.append(result)

    # Process results and finalize
    self._process_subgraph_results(subgraph_results, query_info, unified_subgraph, subgraphs)
    return self._finalize_subgraph_results(subgraphs, unified_subgraph)

_prepare_final_subgraph(state, subgraph, cfg_db)

Prepare the subgraph based on the extracted subgraph.

Parameters:

Name Type Description Default
state Annotated[dict, InjectedState]

The injected state for the tool.

required
subgraph dict

The extracted subgraph.

required
cfg_db

The configuration dictionary for Milvus database.

required

Returns:

Type Description
dict

A dictionary containing the PyG graph, NetworkX graph, and textualized graph.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
def _prepare_final_subgraph(
    self, state: Annotated[dict, InjectedState], subgraph: dict, cfg_db
) -> dict:
    """
    Prepare the subgraph based on the extracted subgraph.

    Args:
        state: The injected state for the tool.
        subgraph: The extracted subgraph.
        cfg_db: The configuration dictionary for Milvus database.

    Returns:
        A dictionary containing the PyG graph, NetworkX graph, and textualized graph.
    """
    # Convert the dict to a DataFrame
    node_colors = {
        n: cfg_db.node_colors_dict[k] for k, v in state["selections"].items() for n in v
    }
    color_df = self.loader.df.DataFrame(list(node_colors.items()), columns=["node_id", "color"])
    # print(color_df)

    # Prepare the subgraph dictionary
    graph_dict = {"name": [], "nodes": [], "edges": [], "text": ""}
    for sub in getattr(subgraph, "to_pandas", lambda: subgraph)().itertuples(index=False):
        graph_nodes, graph_edges = self._process_subgraph_data(sub, cfg_db, color_df)

        # Prepare lists for visualization
        graph_dict["name"].append(sub.name)
        graph_dict["nodes"].append(
            [
                (
                    row.node_id,
                    {
                        "hover": "Node Name : "
                        + row.node_name
                        + "\n"
                        + "Node Type : "
                        + row.node_type
                        + "\n"
                        + "Desc : "
                        + row.desc,
                        "click": "$hover",
                        "color": row.color,
                    },
                )
                for row in getattr(
                    graph_nodes,
                    "to_pandas",
                    lambda graph_nodes=graph_nodes: graph_nodes,
                )().itertuples(index=False)
            ]
        )
        graph_dict["edges"].append(
            [
                (row.head_id, row.tail_id, {"label": tuple(row.edge_type)})
                for row in getattr(
                    graph_edges,
                    "to_pandas",
                    lambda graph_edges=graph_edges: graph_edges,
                )().itertuples(index=False)
            ]
        )

        # Prepare the textualized subgraph
        if sub.name == "Unified Subgraph":
            graph_nodes = graph_nodes[["node_id", "desc"]]
            graph_nodes.rename(columns={"desc": "node_attr"}, inplace=True)
            graph_edges = graph_edges[["head_id", "edge_type", "tail_id"]]
            nodes_pandas = getattr(
                graph_nodes,
                "to_pandas",
                lambda graph_nodes=graph_nodes: graph_nodes,
            )()
            nodes_csv = nodes_pandas.to_csv(index=False)
            edges_pandas = getattr(
                graph_edges,
                "to_pandas",
                lambda graph_edges=graph_edges: graph_edges,
            )()
            edges_csv = edges_pandas.to_csv(index=False)
            graph_dict["text"] = nodes_csv + "\n" + edges_csv

    return graph_dict

_prepare_query_modalities(prompt, state, cfg_db)

Prepare the modality-specific query for subgraph extraction.

Parameters:

Name Type Description Default
prompt dict

The dictionary containing the user prompt and embeddings.

required
state Annotated[dict, InjectedState]

The injected state for the tool.

required
cfg_db dict

The configuration dictionary for Milvus database.

required

Returns:

Type Description

A DataFrame containing the query embeddings and modalities.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
def _prepare_query_modalities(
    self, prompt: dict, state: Annotated[dict, InjectedState], cfg_db: dict
):
    """
    Prepare the modality-specific query for subgraph extraction.

    Args:
        prompt: The dictionary containing the user prompt and embeddings.
        state: The injected state for the tool.
        cfg_db: The configuration dictionary for Milvus database.

    Returns:
        A DataFrame containing the query embeddings and modalities.
    """
    # Initialize dataframes
    logger.log(logging.INFO, "Initializing dataframes")
    query_df = []
    prompt_df = self.loader.df.DataFrame(
        {
            "node_id": "user_prompt",
            "node_name": "User Prompt",
            "node_type": "prompt",
            "feat": prompt["text"],
            "feat_emb": prompt["emb"],
            "desc": prompt["text"],
            "desc_emb": prompt["emb"],
            "use_description": True,  # set to True for user prompt embedding
        }
    )

    # Read multimodal files uploaded by the user
    multimodal_df = self._read_multimodal_files(state)

    # Check if the multimodal_df is empty
    logger.log(logging.INFO, "Prepare query modalities")
    if len(multimodal_df) > 0:
        # Query the Milvus database for each node type in multimodal_df
        logger.log(
            logging.INFO,
            "Querying Milvus database for each node type in multimodal_df",
        )
        for node_type, node_type_df in multimodal_df.groupby("q_node_type"):
            print(f"Processing node type: {node_type}")
            res_df = self._query_milvus_collection(node_type, node_type_df, cfg_db)
            query_df.append(res_df)

        # Concatenate all results into a single DataFrame
        logger.log(logging.INFO, "Concatenating all results into a single DataFrame")
        query_df = self.loader.df.concat(query_df, ignore_index=True)

        # Update the state by adding the the selected node IDs
        logger.log(logging.INFO, "Updating state with selected node IDs")
        state["selections"] = (
            getattr(query_df, "to_pandas", lambda: query_df)()
            .groupby("node_type")["node_id"]
            .apply(list)
            .to_dict()
        )

        # Append a user prompt to the query dataframe
        logger.log(logging.INFO, "Adding user prompt to query dataframe")
        query_df = self.loader.df.concat([query_df, prompt_df]).reset_index(drop=True)
    else:
        # If no multimodal files are uploaded, use the prompt embeddings
        query_df = prompt_df

    return query_df

_prepare_query_modalities_async(prompt, state, cfg_db, connection_manager) async

Prepare the modality-specific query for subgraph extraction asynchronously.

Parameters:

Name Type Description Default
prompt dict

The dictionary containing the user prompt and embeddings

required
state Annotated[dict, InjectedState]

The injected state for the tool

required
cfg_db dict

The configuration dictionary for Milvus database

required
connection_manager

The MilvusConnectionManager instance

required

Returns:

Type Description

A DataFrame containing the query embeddings and modalities

Source code in aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
async def _prepare_query_modalities_async(
    self,
    prompt: dict,
    state: Annotated[dict, InjectedState],
    cfg_db: dict,
    connection_manager,
):
    """
    Prepare the modality-specific query for subgraph extraction asynchronously.

    Args:
        prompt: The dictionary containing the user prompt and embeddings
        state: The injected state for the tool
        cfg_db: The configuration dictionary for Milvus database
        connection_manager: The MilvusConnectionManager instance

    Returns:
        A DataFrame containing the query embeddings and modalities
    """
    # Initialize dataframes
    logger.log(logging.INFO, "Initializing dataframes (async)")
    query_df = []
    prompt_df = self.loader.df.DataFrame(
        {
            "node_id": "user_prompt",
            "node_name": "User Prompt",
            "node_type": "prompt",
            "feat": prompt["text"],
            "feat_emb": prompt["emb"],
            "desc": prompt["text"],
            "desc_emb": prompt["emb"],
            "use_description": True,  # set to True for user prompt embedding
        }
    )

    # Read multimodal files uploaded by the user
    multimodal_df = self._read_multimodal_files(state)

    # Check if the multimodal_df is empty
    logger.log(logging.INFO, "Prepare query modalities (async)")
    if len(multimodal_df) > 0:
        # Create parallel tasks for querying each node type
        logger.log(
            logging.INFO,
            "Querying Milvus database for each node type in multimodal_df (parallel)",
        )

        # Create async tasks for each node type
        tasks = []
        for node_type, node_type_df in multimodal_df.groupby("q_node_type"):
            print(f"Processing node type: {node_type}")
            task = self._query_milvus_collection_async(
                node_type, node_type_df, cfg_db, connection_manager
            )
            tasks.append(task)

        # Execute all queries in parallel using hybrid approach
        if len(tasks) == 1:
            # Single task, run directly
            query_results = [await tasks[0]]
        else:
            # Multiple tasks, but use sequential execution to avoid event loop issues
            query_results = []
            for task in tasks:
                result = await task
                query_results.append(result)

        query_df.extend(query_results)

        # Concatenate all results into a single DataFrame
        logger.log(logging.INFO, "Concatenating all results into a single DataFrame")
        query_df = self.loader.df.concat(query_df, ignore_index=True)

        # Update the state by adding the selected node IDs
        logger.log(logging.INFO, "Updating state with selected node IDs")
        state["selections"] = (
            getattr(query_df, "to_pandas", lambda: query_df)()
            .groupby("node_type")["node_id"]
            .apply(list)
            .to_dict()
        )

        # Append a user prompt to the query dataframe
        logger.log(logging.INFO, "Adding user prompt to query dataframe")
        query_df = self.loader.df.concat([query_df, prompt_df]).reset_index(drop=True)
    else:
        # If no multimodal files are uploaded, use the prompt embeddings
        query_df = prompt_df

    return query_df

_process_subgraph_data(sub, cfg_db, color_df)

Helper method to process individual subgraph data.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
def _process_subgraph_data(self, sub, cfg_db, color_df):
    """Helper method to process individual subgraph data."""
    print(f"Processing subgraph: {sub.name}")
    print("---")
    print(sub.nodes)
    print("---")
    print(sub.edges)
    print("---")

    # Prepare graph dataframes - Nodes
    coll_name = f"{cfg_db.milvus_db.database_name}_nodes"
    node_coll = Collection(name=coll_name)
    node_coll.load()
    graph_nodes = node_coll.query(
        expr=f"node_index IN [{','.join(f'{n}' for n in sub.nodes)}]",
        output_fields=["node_id", "node_name", "node_type", "desc"],
    )
    graph_nodes = self.loader.df.DataFrame(graph_nodes)
    graph_nodes.drop(columns=["node_index"], inplace=True)
    if not color_df.empty:
        graph_nodes = graph_nodes.merge(color_df, on="node_id", how="left")
    else:
        graph_nodes["color"] = "black"
    graph_nodes["color"] = graph_nodes["color"].fillna("black")

    # Edges
    coll_name = f"{cfg_db.milvus_db.database_name}_edges"
    edge_coll = Collection(name=coll_name)
    edge_coll.load()
    graph_edges = edge_coll.query(
        expr=f"triplet_index IN [{','.join(f'{e}' for e in sub.edges)}]",
        output_fields=["head_id", "tail_id", "edge_type"],
    )
    graph_edges = self.loader.df.DataFrame(graph_edges)
    graph_edges.drop(columns=["triplet_index"], inplace=True)
    graph_edges["edge_type"] = graph_edges["edge_type"].str.split("|")

    return graph_nodes, graph_edges

_process_subgraph_results(subgraph_results, query_info, unified_subgraph, subgraphs)

Process individual subgraph results.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py
521
522
523
524
525
526
527
528
529
530
531
532
533
def _process_subgraph_results(self, subgraph_results, query_info, unified_subgraph, subgraphs):
    """Process individual subgraph results."""
    for i, subgraph in enumerate(subgraph_results):
        query_row = query_info[i]
        unified_subgraph["nodes"].append(subgraph["nodes"].tolist())
        unified_subgraph["edges"].append(subgraph["edges"].tolist())
        subgraphs.append(
            (
                query_row["node_name"],
                subgraph["nodes"].tolist(),
                subgraph["edges"].tolist(),
            )
        )

_query_milvus_collection(node_type, node_type_df, cfg_db)

Helper method to query Milvus collection for a specific node type.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
def _query_milvus_collection(self, node_type, node_type_df, cfg_db):
    """Helper method to query Milvus collection for a specific node type."""
    # Load the collection
    collection = Collection(
        name=f"{cfg_db.milvus_db.database_name}_nodes_{node_type.replace('/', '_')}"
    )
    collection.load()

    # Query the collection with node names from multimodal_df
    node_names_series = node_type_df["q_node_name"]
    q_node_names = getattr(
        node_names_series, "to_pandas", lambda series=node_names_series: series
    )().tolist()
    q_columns = [
        "node_id",
        "node_name",
        "node_type",
        "feat",
        "feat_emb",
        "desc",
        "desc_emb",
    ]
    res = collection.query(
        expr=f"node_name IN [{','.join(f'"{name}"' for name in q_node_names)}]",
        output_fields=q_columns,
    )
    # Convert the embeedings into floats
    for r_ in res:
        r_["feat_emb"] = [float(x) for x in r_["feat_emb"]]
        r_["desc_emb"] = [float(x) for x in r_["desc_emb"]]

    # Convert the result to a DataFrame
    res_df = self.loader.df.DataFrame(res)[q_columns]
    res_df["use_description"] = False
    return res_df

_query_milvus_collection_async(node_type, node_type_df, cfg_db, connection_manager) async

Helper method to query Milvus collection asynchronously for a specific node type.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
async def _query_milvus_collection_async(
    self, node_type, node_type_df, cfg_db, connection_manager
):
    """Helper method to query Milvus collection asynchronously for a specific node type."""
    collection_name = f"{cfg_db.milvus_db.database_name}_nodes_{node_type.replace('/', '_')}"

    # Query the collection with node names from multimodal_df
    node_names_series = node_type_df["q_node_name"]
    q_node_names = getattr(
        node_names_series, "to_pandas", lambda series=node_names_series: series
    )().tolist()

    # Create filter expression for async query
    node_names_str = ",".join(f'"{name}"' for name in q_node_names)
    expr = f"node_name IN [{node_names_str}]"

    q_columns = [
        "node_id",
        "node_name",
        "node_type",
        "feat",
        "feat_emb",
        "desc",
        "desc_emb",
    ]

    # Create query parameters and perform async query
    query_params = QueryParams(
        collection_name=collection_name, expr=expr, output_fields=q_columns
    )
    res = await connection_manager.async_query(query_params)

    # Convert the embeddings into floats
    for r_ in res:
        r_["feat_emb"] = [float(x) for x in r_["feat_emb"]]
        r_["desc_emb"] = [float(x) for x in r_["desc_emb"]]

    # Convert the result to a DataFrame
    res_df = (
        self.loader.df.DataFrame(res)[q_columns]
        if res
        else self.loader.df.DataFrame(columns=q_columns)
    )
    res_df["use_description"] = False
    return res_df

_read_multimodal_files(state)

Read the uploaded multimodal files and return a DataFrame.

Parameters:

Name Type Description Default
state Annotated[dict, InjectedState]

The injected state for the tool.

required

Returns:

Type Description

A DataFrame containing the multimodal files.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
def _read_multimodal_files(self, state: Annotated[dict, InjectedState]):
    """
    Read the uploaded multimodal files and return a DataFrame.

    Args:
        state: The injected state for the tool.

    Returns:
        A DataFrame containing the multimodal files.
    """
    multimodal_df = self.loader.df.DataFrame({"name": [], "node_type": []})

    # Loop over the uploaded files and find multimodal files
    logger.log(logging.INFO, "Looping over uploaded files")
    for i in range(len(state["uploaded_files"])):
        # Check if multimodal file is uploaded
        if state["uploaded_files"][i]["file_type"] == "multimodal":
            # Read the Excel file
            multimodal_df = pd.read_excel(
                state["uploaded_files"][i]["file_path"], sheet_name=None
            )

    # Check if the multimodal_df is empty
    logger.log(logging.INFO, "Checking if multimodal_df is empty")
    if len(multimodal_df) > 0:
        # Prepare multimodal_df
        logger.log(logging.INFO, "Preparing multimodal_df")
        # Merge all obtained dataframes into a single dataframe
        multimodal_df = pd.concat(multimodal_df).reset_index()
        multimodal_df = self.loader.df.DataFrame(multimodal_df)
        multimodal_df.drop(columns=["level_1"], inplace=True)
        multimodal_df.rename(
            columns={"level_0": "q_node_type", "name": "q_node_name"}, inplace=True
        )
        # Since an excel sheet name could not contain a `/`,
        # but the node type can be 'gene/protein' as exists in the PrimeKG
        multimodal_df["q_node_type"] = multimodal_df["q_node_type"].str.replace("-", "_")

    return multimodal_df

_run(tool_call_id, state, prompt, arg_data=None)

Synchronous wrapper for the async _run_async method. This maintains compatibility with LangGraph while using async operations internally.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
def _run(
    self,
    tool_call_id: Annotated[str, InjectedToolCallId],
    state: Annotated[dict, InjectedState],
    prompt: str,
    arg_data: ArgumentData = None,
) -> Command:
    """
    Synchronous wrapper for the async _run_async method.
    This maintains compatibility with LangGraph while using async operations internally.
    """
    # concurrent.futures imported at top level

    def run_in_thread():
        """Run async method in a new thread with its own event loop."""
        # Create a new event loop for this thread
        new_loop = asyncio.new_event_loop()
        asyncio.set_event_loop(new_loop)
        try:
            result = new_loop.run_until_complete(
                self._run_async(tool_call_id, state, prompt, arg_data)
            )
            return result
        finally:
            # Properly cleanup the event loop
            new_loop.close()
            asyncio.set_event_loop(None)

    # Always use a separate thread to avoid event loop conflicts
    with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
        future = executor.submit(run_in_thread)
        return future.result()

_run_async(tool_call_id, state, prompt, arg_data=None) async

Run the subgraph extraction tool.

Parameters:

Name Type Description Default
tool_call_id Annotated[str, InjectedToolCallId]

The tool call ID for the tool.

required
state Annotated[dict, InjectedState]

Injected state for the tool.

required
prompt str

The prompt to interact with the backend.

required
arg_data ArgumentData

The argument data.

None

Returns:

Name Type Description
Command Command

The command to be executed.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
async def _run_async(
    self,
    tool_call_id: Annotated[str, InjectedToolCallId],
    state: Annotated[dict, InjectedState],
    prompt: str,
    arg_data: ArgumentData = None,
) -> Command:
    """
    Run the subgraph extraction tool.

    Args:
        tool_call_id: The tool call ID for the tool.
        state: Injected state for the tool.
        prompt: The prompt to interact with the backend.
        arg_data (ArgumentData): The argument data.

    Returns:
        Command: The command to be executed.
    """
    logger.log(logging.INFO, "Invoking subgraph_extraction tool")

    # Load hydra configuration
    with hydra.initialize(version_base=None, config_path="../configs"):
        cfg = hydra.compose(
            config_name="config",
            overrides=["tools/multimodal_subgraph_extraction=default"],
        )
        cfg = cfg.tools.multimodal_subgraph_extraction

    # Load database configuration separately
    with hydra.initialize(version_base=None, config_path="../configs"):
        cfg_all = hydra.compose(config_name="config")
        cfg_db = cfg_all.utils.database.milvus

    # Establish Milvus connection using singleton connection manager
    logger.log(logging.INFO, "Getting Milvus connection manager (singleton)")
    connection_manager = MilvusConnectionManager(cfg_db)
    try:
        connection_manager.ensure_connection()
        logger.log(logging.INFO, "Milvus connection established successfully")

        # Log connection info
        conn_info = connection_manager.get_connection_info()
        logger.log(logging.INFO, "Connected to database: %s", conn_info.get("database"))
        logger.log(
            logging.INFO,
            "Connection healthy: %s",
            connection_manager.test_connection(),
        )
    except Exception as e:
        logger.error("Failed to establish Milvus connection: %s", str(e))
        raise RuntimeError(f"Cannot connect to Milvus database: {str(e)}") from e

    # Prepare the query embeddings and modalities (async)
    logger.log(logging.INFO, "_prepare_query_modalities_async")
    query_df = await self._prepare_query_modalities_async(
        {
            "text": prompt,
            "emb": [self.normalize_vector(state["embedding_model"].embed_query(prompt))],
        },
        state,
        cfg_db,
        connection_manager,
    )

    # Perform subgraph extraction (async)
    logger.log(logging.INFO, "_perform_subgraph_extraction_async")
    extraction_params = ExtractionParams(
        state=state,
        cfg=cfg,
        cfg_db=cfg_db,
        query_df=query_df,
        connection_manager=connection_manager,
    )
    subgraphs = await self._perform_subgraph_extraction_async(extraction_params)

    # Prepare subgraph as a NetworkX graph and textualized graph
    logger.log(logging.INFO, "_prepare_final_subgraph")
    logger.log(logging.INFO, "Subgraphs extracted: %s", len(subgraphs))
    # start = datetime.datetime.now()
    final_subgraph = self._prepare_final_subgraph(state, subgraphs, cfg_db)
    # end = datetime.datetime.now()
    # logger.log(logging.INFO, "_prepare_final_subgraph time: %s seconds",
    #            (end - start).total_seconds())

    # Create final result and return command
    return self._create_extraction_result(tool_call_id, state, final_subgraph, arg_data)

_run_pcst_algorithm(pcst_instance, edge_index, num_nodes, prizes)

Run PCST algorithm and get subgraph results.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
def _run_pcst_algorithm(self, pcst_instance, edge_index, num_nodes, prizes):
    """Run PCST algorithm and get subgraph results."""
    # Compute costs in constructing the subgraph
    edges_dict, prizes_final, costs, mapping = pcst_instance.compute_subgraph_costs(
        edge_index, num_nodes, prizes
    )

    # Retrieve the subgraph using the PCST algorithm
    result_vertices, result_edges = pcst_fast.pcst_fast(
        edges_dict["edges"].tolist(),
        prizes_final.tolist(),
        costs.tolist(),
        pcst_instance.root,
        pcst_instance.num_clusters,
        pcst_instance.pruning,
        pcst_instance.verbosity_level,
    )

    # Get subgraph nodes and edges based on the PCST result
    return pcst_instance.get_subgraph_nodes_edges(
        num_nodes,
        pcst_instance.loader.py.asarray(result_vertices),
        {
            "edges": pcst_instance.loader.py.asarray(result_edges),
            "num_prior_edges": edges_dict["num_prior_edges"],
            "edge_index": edge_index,
        },
        mapping,
    )

normalize_vector(v)

Normalize a vector using appropriate library (CuPy for GPU, NumPy for CPU).

Parameters:

Name Type Description Default
v

Vector to normalize.

required

Returns:

Type Description
list

Normalized vector.

Source code in aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
def normalize_vector(self, v: list) -> list:
    """
    Normalize a vector using appropriate library (CuPy for GPU, NumPy for CPU).

    Args:
        v : Vector to normalize.

    Returns:
        Normalized vector.
    """
    if self.loader.normalize_vectors:
        # GPU mode: normalize the vector
        v_array = self.loader.py.asarray(v)
        norm = self.loader.py.linalg.norm(v_array)
        return (v_array / norm).tolist()
    # CPU mode: return as-is for COSINE similarity
    return v