Skip to content

Main Agent

Main agent for the talk2competitors app.

get_app(thread_id, llm_model='gpt-4o-mini')

Returns the langraph app with hierarchical structure.

Parameters:

Name Type Description Default
thread_id str

The thread ID for the conversation.

required

Returns:

Type Description
StateGraph

The compiled langraph app.

Source code in aiagents4pharma/talk2competitors/agents/main_agent.py
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
def get_app(thread_id: str, llm_model ='gpt-4o-mini') -> StateGraph:
    """
    Returns the langraph app with hierarchical structure.

    Args:
        thread_id (str): The thread ID for the conversation.

    Returns:
        The compiled langraph app.
    """
    def call_s2_agent(state: Talk2Competitors) -> Command[Literal["__end__"]]:
        """
        Node for calling the S2 agent.

        Args:
            state (Talk2Competitors): The current state of the conversation.

        Returns:
            Command[Literal["__end__"]]: The command to execute next.
        """
        logger.info("Calling S2 agent")
        app = s2_agent.get_app(thread_id, llm_model)
        response = app.invoke(state)
        logger.info("S2 agent completed")
        return Command(
            goto=END,
            update={
                "messages": response["messages"],
                "papers": response.get("papers", []),
                "is_last_step": True,
                "current_agent": "s2_agent",
            },
        )
    llm = ChatOpenAI(model=llm_model, temperature=0)
    workflow = StateGraph(Talk2Competitors)

    supervisor = make_supervisor_node(llm)
    workflow.add_node("supervisor", supervisor)
    workflow.add_node("s2_agent", call_s2_agent)

    # Define edges
    workflow.add_edge(START, "supervisor")
    workflow.add_edge("s2_agent", END)

    app = workflow.compile(checkpointer=MemorySaver())
    logger.info("Main agent workflow compiled")
    return app

make_supervisor_node(llm)

Creates a supervisor node following LangGraph patterns.

Parameters:

Name Type Description Default
llm BaseChatModel

The language model to use for generating responses.

required

Returns:

Name Type Description
str str

The supervisor node function.

Source code in aiagents4pharma/talk2competitors/agents/main_agent.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def make_supervisor_node(llm: BaseChatModel) -> str:
    """
    Creates a supervisor node following LangGraph patterns.

    Args:
        llm (BaseChatModel): The language model to use for generating responses.

    Returns:
        str: The supervisor node function.
    """
    # options = ["FINISH", "s2_agent"]

    def supervisor_node(state: Talk2Competitors) -> Command[Literal["s2_agent", "__end__"]]:
        """
        Supervisor node that routes to appropriate sub-agents.

        Args:
            state (Talk2Competitors): The current state of the conversation.

        Returns:
            Command[Literal["s2_agent", "__end__"]]: The command to execute next.
        """
        logger.info("Supervisor node called")

        messages = [{"role": "system", "content": config.MAIN_AGENT_PROMPT}] + state[
            "messages"
        ]
        response = llm.invoke(messages)
        goto = (
            "FINISH"
            if not any(
                kw in state["messages"][-1].content.lower()
                for kw in ["search", "paper", "find"]
            )
            else "s2_agent"
        )

        if goto == "FINISH":
            return Command(
                goto=END,
                update={
                    "messages": state["messages"]
                    + [AIMessage(content=response.content)],
                    "is_last_step": True,
                    "current_agent": None,
                },
            )

        return Command(
            goto="s2_agent",
            update={
                "messages": state["messages"],
                "is_last_step": False,
                "current_agent": "s2_agent",
            },
        )

    return supervisor_node