A tool to fetch studies from the Single Cell Portal.
Fetch studies from single cell portal
Parameters:
Name |
Type |
Description |
Default |
search_term
|
str
|
The search term to use. Example: "COVID-19", "cancer", etc.
|
required
|
limit
|
int
|
The number of papers to return. Default is 5.
|
5
|
Source code in aiagents4pharma/talk2cells/tools/scp_agent/search_studies.py
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79 | @tool('search_studies')
def search_studies(search_term: str,
tool_call_id: Annotated[str, InjectedToolCallId],
limit: int = 5):
"""
Fetch studies from single cell portal
Args:
search_term (str): The search term to use. Example: "COVID-19", "cancer", etc.
limit (int): The number of papers to return. Default is 5.
"""
logger.log(logging.INFO, "Calling the tool search_studies")
scp_endpoint = 'https://singlecell.broadinstitute.org/single_cell/api/v1/search?type=study'
# params = {'terms': search_term, 'facets': 'MONDO_0005011'}
params = {'terms': search_term}
status_code = 0
while status_code != 200:
# Make a GET request to the single cell portal
search_response = requests.get(scp_endpoint,
params=params,
timeout=10,
verify=False)
status_code = search_response.status_code
logger.log(logging.INFO, "Status code %s received from SCP")
# Select the columns to display in the table
selected_columns = ["study_source", "name", "study_url", "gene_count", "cell_count"]
# Extract the data from the response
# with the selected columns
df = pd.DataFrame(search_response.json()['studies'])[selected_columns]
# Convert column 'Study Name' into clickable
# hyperlinks from the column 'Study URL'
scp_api_url = 'https://singlecell.broadinstitute.org'
df['name'] = df.apply(
lambda x: f"<a href=\"{scp_api_url}/{x['study_url']}\">{x['name']}</a>",
axis=1)
# Excldue the column 'Study URL' from the dataframe
df = df.drop(columns=['study_url'])
# Add a new column a the beginning of the dataframe with row numbers
df.insert(0, 'S/N', range(1, 1 + len(df)))
# Update the state key 'search_table' with the dataframe in markdown format
return Command(
update={
# update the state keys
"search_table": df.to_markdown(tablefmt="grid"),
# update the message history
"messages": [
ToolMessage(
f"Successfully fetched {limit} studies on {search_term}.",
tool_call_id=tool_call_id
)
],
}
)
|