def get_app(uniq_id, llm_model: BaseChatModel):
'''
This function returns the langraph app.
'''
if hasattr(llm_model, 'model_name'):
if llm_model.model_name == 'gpt-4o-mini':
llm_model = ChatOpenAI(model='gpt-4o-mini',
temperature=0,
model_kwargs={"parallel_tool_calls": False})
# Load hydra configuration
logger.log(logging.INFO, "Launching AIAgents4Pharma_Agent with thread_id %s", uniq_id)
with hydra.initialize(version_base=None, config_path="../configs"):
cfg = hydra.compose(config_name='config',
overrides=['agents/main_agent=default'])
cfg = cfg.agents.main_agent
logger.log(logging.INFO, "System_prompt of T2AA4P: %s", cfg.system_prompt)
with hydra.initialize(version_base=None, config_path="../../talk2biomodels/configs"):
cfg_t2b = hydra.compose(config_name='config',
overrides=['agents/t2b_agent=default'])
cfg_t2b = cfg_t2b.agents.t2b_agent
with hydra.initialize(version_base=None, config_path="../../talk2knowledgegraphs/configs"):
cfg_t2kg = hydra.compose(config_name='config',
overrides=['agents/t2kg_agent=default'])
cfg_t2kg = cfg_t2kg.agents.t2kg_agent
system_prompt = cfg.system_prompt
system_prompt += "\n\nHere is the system prompt of T2B agent\n"
system_prompt += cfg_t2b.state_modifier
system_prompt += "\n\nHere is the system prompt of T2KG agent\n"
system_prompt += cfg_t2kg.state_modifier
# Create supervisor workflow
workflow = create_supervisor(
[
get_app_t2b(uniq_id, llm_model), # Talk2BioModels
get_app_t2kg(uniq_id, llm_model) # Talk2KnowledgeGraphs
],
model=llm_model,
state_schema=Talk2AIAgents4Pharma,
# Full history is needed to extract
# the tool artifacts
output_mode="full_history",
add_handoff_back_messages=True,
prompt=system_prompt
)
# Compile and run
app = workflow.compile(checkpointer=MemorySaver(),
name="AIAgents4Pharma_Agent")
return app